Vacuum Cups
 Section 2

FDPD LISA

Bellows

Bellows Flat

Flat-Concave

Oval

Bellows	3
Double Bellows	8
Bellows Flat	10
Multi-Bellows	12
Deep	14
Flat	16
Flat-Concave	21
Oval	24
Universal	26
Egg	29
Information	30

Bellows Vacuum Cups

Bellows vacuum cups are used when it is necessary to compensate for varying workpiece heights, to handle parts with uneven (concave, convex, or textured) surfaces, or easily damaged parts. A lifting effect during evacuation can be used to help separate a top sheet from those stacked below. Bellows vacuum cups can conform to curved or uneven workpieces such as pipes, bottles, containers, cylinders, car body components, flexing cardboard boxes, etc. Bellows vacuum cups provide height compensation and a ball-join motion through a limited angular range.

Suitable Workpiece Surface:

- Flat
- Slightly Concave
- Convex
- Compound
- Spherical
- Cylindrical
- Flexible
- Shear Loads

Bellows Vacuum Cups

${ }^{1}$ Not available on XP-B15 or XP-B20.
${ }^{2}$ Not available on $X P-B 5, X P-B 8$, or $X P-B 10$.

XP-B5

Cup Diameter: in [mm]	5 mm
Outer Diameter: in [mm]	$0.24[6.1]$
Cup Height: in [mm]	$0.37[9.3]$
Thru Hole: in [mm]	$0.08[2.0]$
Stroke: in [mm]	$0.06[1.5]$
Cup Weight: oz [g]	$0.004[0.11]$
Internal Volume: cu in [cc]	$0.01[0.2]$
Force @ 6 inHG: lb [n]	$0.07[0.3]$
Force @ 18 inHG: lb [n]	$0.10[0.4]$
Minimum Radius: in [mm]	$0.06[1.5]$
Shear Load*: lb [n]	$0.05[0.2]$

XP-B8

Cup Diameter: in [mm]	8 mm
Outer Diameter: in [mm]	$0.38[9.6]$
Cup Height: in [mm]	0.47 [12.0]
Thru Hole: in [mm]	$0.08[2.0]$
Stroke: in [mm]	$0.13[3.3]$
Cup Weight: oz [g]	$0.01[0.3]$
Internal Volume: cu in [cc]	$0.01[0.2]$
Force @ 6 inHG: lb [n]	$0.18[0.8]$
Force @ 18 inHG: lb [n]	$0.36[1.6]$
Minimum Radius: in [mm]	$0.07[1.8]$
Shear Load*: lb [n]	$0.18[0.8]$

XP-B10

Cup Diameter: in [mm]	10 mm
Outer Diameter: in [mm]	0.48 [12.2]
Cup Height: in [mm]	0.63 [16.0]
Thru Hole: in [mm]	0.14 [3.7]
Stroke: in [mm]	$0.18[4.5]$
Cup Weight: oz [g]	$0.03[0.9]$
Internal Volume: cu in [cc]	$0.03[0.5]$
Force @ 6 inHG: lb [n]	$0.3[1.3]$
Force @ 18 inHG: lb [n]	$0.8[3.6]$
Minimum Radius: in [mm]	$0.16[4.1]$
Shear Load*: lb [n]	$0.4[1.7]$

XP-B15

Cup Diameter: in [mm]	15 mm
Outer Diameter: in [mm]	0.70 [17.7]
Cup Height: in [mm]	0.79 [20.0]
Thru Hole: in [mm]	0.14 [3.7]
Stroke: in [mm]	$0.26[6.6]$
Cup Weight: oz [g]	$0.04[1.1]$
Internal Volume: cu in [cc]	0.07 [1.2]
Force @ 6 inHG: lb [n]	$0.70[3.1]$
Force @ 18 inHG: Ib [n]	$1.30[5.8]$
Minimum Radius: in [mm]	$0.20[5.1]$
Shear Load*: lb [n]	$0.70[3.1]$

XP-B20

Cup Diameter: in [mm]	20 mm
Outer Diameter: in [mm]	$0.94[23.9]$
Cup Height: in [mm]	0.69 [17.6]
Thru Hole: in [mm]	0.20 [5.1]
Stroke: in [mm]	$0.39[9.9]$
Cup Weight: oz [g]	0.08 [2.3]
Internal Volume: cu in [cc]	$0.16[2.6]$
Force @ 6 inHG: Ib [n]	$1.30[5.8]$
Force @ 18 inHG: Ib [n]	$2.20[9.8]$
Minimum Radius: in [mm]	$0.39[9.9]$
Shear Load*: Ib [n]	$1.10[4.8]$

*All figures for shear load are 18 inHg using a 0.5 coefficient of friction.
Adjust coefficient of friction to suit your conditions, then apply a generous factor of safety (3:1 or greater) to shear loads.

Bellows Vacuum Cups

	Cup Size			up Material	Cup	ting
XP-B	50			V	-38F	
	30	$\varnothing 30$ mm	A	Ameriflex	(Blank)	None
	40	$\varnothing 40 \mathrm{~mm}$	D	Duramax	See cup fittings for available threads.	
	50	$\varnothing 50 \mathrm{~mm}$	N	Nitrile / TPV		
	65	$\varnothing 65$ mm	S	Silicone ${ }^{1}$		
			V	Viton ${ }^{1}$		

${ }^{1}$ Not available on XP-B65.

XP-B30

Cup Diameter: in [mm]	30 mm
Outer Diameter: in [mm]	$1.42[36.1]$
Cup Height: in [mm]	$1.04[26.4]$
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	$0.59[14.9]$
Cup Weight: oz [g]	0.25 [7.1]
Internal Volume: cu in [cc]	$0.61[10.0]$
Force @ 6 inHG: lb [n]	$2.70[12.0]$
Force @ 18 inHG: Ib [n]	$4.90[21.8]$
Minimum Radius: in [mm]	$0.59[15.0]$
Shear Load*: lb [n]	$2.50[11.1]$

XP-B50

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	2.23 [56.6]
Cup Height: in [mm]	1.36 [34.7]
Thru Hole: in [mm]	0.36 [9.1]
Stroke: in [mm]	0.79 [20.0]
Cup Weight: oz [g]	0.66 [18.8]
Internal Volume: cu in [cc]	2.00 [32.8]
Force @ 6 inHG: Ib [n]	7.40 [32.9]
Force @ 18 inHG: lb [n]	14.60 [64.9]
Minimum Radius: in [mm]	$0.98[24.9]$
Shear Load*: lb [n]	$7.30[32.4]$

XP-B40

Cup Diameter: in [mm]	40 mm
Outer Diameter: in [mm]	$1.82[46.2]$
Cup Height: in [mm]	1.08 [27.4]
Thru Hole: in [mm]	$0.29[7.4]$
Stroke: in [mm]	$0.59[14.9]$
Cup Weight: oz [g]	0.35 [9.9]
Internal Volume: cu in [cc]	$0.90[14.7]$
Force @ 6 inHG: lb [n]	$4.90[21.8]$
Force @ 18 inHG: lb [n]	$8.80[39.1]$
Minimum Radius: in [mm]	$0.79[20.1]$
Shear Load*: lb [n]	$4.40[19.5]$

XP-B65

Cup Diameter: in [mm]	65 mm
Outer Diameter: in [mm]	$2.87[72.9]$
Cup Height: in [mm]	$1.66[42.2]$
Thru Hole: in [mm]	$0.50[12.7]$
Stroke: in [mm]	$0.90[22.9]$
Cup Weight: oz [g]	$1.30[36.9]$
Internal Volume: cu in [cc]	$3.90[63.9]$
Force @ 6 inHG: lb [n]	$13.30[59.2]$
Force @ 18 inHG: lb [n]	$26.30[117.0]$
Minimum Radius: in [mm]	$1.22[31.0]$
Shear Load*: lb [n]	$13.1[58.3]$

*All figures for shear load are 18 inHg using a 0.5 coefficient of friction.
Adjust coefficient of friction to suit your conditions, then apply a generous factor of safety (3:1 or greater) to shear loads.

Bellows Vacuum Cups

	Cup Size		Cup Material		Cup Fitting	
	75	$\varnothing 75 \mathrm{~mm}$	N	Nitrile / TPV	(Blank)	None
	110	$\varnothing 110 \mathrm{~mm}$	S	Silicone	See cup fittings XP-B for available threads.	
	150	$\varnothing 150 \mathrm{~mm}$	V	Viton	75	

Bellows Vacuum Cups

XP-B250

Cup Diameter: in [mm]	250 mm
Outer Diameter: in [mm]	$9.96[253.0]$
Cup Height: in [mm]	2.56 [65.0]
Stroke: in [mm]	1.44 [36.6]
Cup Weight: oz [g]	3.57 [1.62]
Internal Volume: cu in [cc]	$85.40[1400.0]$
Force @ 18 inHG: lb [n]	450.00 [2002.0]
Minimum Radius: in [mm]	10.00 [254.0]
Shear Load*: lb [n]	$225.00[1001.0]$

Double-Bellows Vacuum Cups

Double-bellows vacuum cups provide a longer stroke than single-bellows vacuum cups for greater ability to compensate for varying workpiece heights. This increased ability to compensate for varying heights does come at the cost of stability.

Our double-bellows vacuum cups include bottom cleats to help stabilize the cup when collapsed against a workpiece. The added traction surface increases the ability to withstand lateral shear loads. The cleats also help prevent flexible workpieces from deforming into the center of the cup when subjected to deep vacuum.

Suitable Workpiece Surface:

- Flat
- Slightly Concave
- Convex
- Compound
- Spherical
- Cylindrical
- Flexible
- Shear Loads

Double-Bellows Vacuum Cups

		Cup Size		Cup Material	Cup	tting
XP-2B		65		A		
	25	$\emptyset 25 \mathrm{~mm}$	A	Ameriflex	(Blank)	None
	35	$\varnothing 35 \mathrm{~mm}$	D	Duramax	See cup fittings for available threads.	
	50	$\varnothing 50 \mathrm{~mm}$	N	Nitrile / TPV		
	65	$\varnothing 65 \mathrm{~mm}$				

Cup Diameter: in [mm]	25 mm
Outer Diameter: in [mm]	1.02 [25.9]
Cup Height: in [mm]	0.74 [18.8]
Thru Hole: in [mm]	0.20 [5.1]
Stroke: in [mm]	0.38 [9.7]
Cup Weight: oz [g]	0.11 [3.1]
Internal Volume: cu in [cc]	0.18 [3.0]
Force @ 6 inHG: lb [n]	2.02 [9.0]
Force @ 18 inHG: Ib [n]	3.15 [14.0]
Minimum Radius: in [mm]	0.31 [7.9]

XP-2B50

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	2.09 [53.0]
Cup Height: in [mm]	$1.52[38.6]$
Thru Hole: in [mm]	0.36 [9.1]
Stroke: in [mm]	$0.82[20.8]$
Cup Weight: oz [g]	$0.85[24.1]$
Internal Volume: cu in [cc]	$1.83[30.0]$
Force @ 6 inHG: lb [n]	$8.32[37.0]$
Force @ 18 inHG: lb [n]	$13.30[59.2]$
Minimum Radius: in [mm]	$1.26[32.0]$

XP-2B35

Cup Diameter: in [mm]	35 mm
Outer Diameter: in [mm]	$1.46[37.0]$
Cup Height: in [mm]	1.04 [26.4]
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	0.59 [15.0]
Cup Weight: oz [g]	0.28 [7.9]
Internal Volume: cu in [cc]	0.61 [10.0]
Force @ 6 inHG: Ib [n]	3.37 [15.0]
Force @ 18 inHG: lb [n]	$5.62[25.0]$
Minimum Radius: in [mm]	$0.39[9.9]$

Cup Diameter: in [mm]	65 mm
Outer Diameter: in [mm]	2.87 [72.9]
Cup Height: in [mm]	2.37 [60.3]
Thru Hole: in [mm]	$0.50[12.7]$
Stroke: in [mm]	$1.30[33.0]$
Cup Weight: oz [g]	$2.20[63.0]$
Internal Volume: cu in [cc]	5.85 [95.9]
Force @ 6 inHG: lb [n]	$8.40[37.4]$
Force @ 18 inHG: lb [n]	$21.00[93.4]$
Minimum Radius: in [mm]	$1.22[31.0]$

Bellows Flat Vacuum Cups

The Bellows flat style vacuum cups combine the versatility of a Bellows cup with a large anti-skid tread pattern to provide maximum holding power and high resistance to shear loads even when lubrication is present. BF Cups are ideal for feeding sheet metal blanks to stamping presses or other robotic applications where it is necessary to resist loads caused by rapid acceleration and deceleration. Mounting bellows flat vacuum cups using the 22 mm wrench flats is quick and easy.

Suitable Workpiece Surface:

- Flat
- Slightly Concave
- Convex
- Compound
- Shear Loads

Bellows Flat Vacuum Cups

		Cup Size		Cup Material		Fitting
XP-BF	80		N		-38F	
	80	$\varnothing 80$ mm	N	Nitrile / TPV	-38F	3/8 NPSF Female
	100	$\varnothing 100 \mathrm{~mm}$				

XP-BF80

Cup Diameter: in [mm]	80 mm
Outer Diameter: in [mm]	3.30 [83.8]
Cup Height: in [mm]*	1.56 [39.7]
Stroke: in [mm]	0.58 [14.7]
Cup Weight: oz [g]	1.70 [48.2]
Internal Volume: cu in [cc]	1.80 [29.5]
Force @ 6 inHG: lb [n]	17.00 [75.6]
Force @ 18 inHG: lb [n]	42.00 [187.0]
Minimum Radius: in [mm]	2.80 [71.1]
Shear Load²: lb [n]	45.00 [200.0]

XP-BF100

Cup Diameter: in [mm]	100 mm
Outer Diameter: in [mm]	4.41 [112.1]
Cup Height: in [mm]*	1.95 [49.6]
Stroke: in [mm]	0.95 [24.1]
Cup Weight: oz [g]	2.40 [68.0]
Internal Volume: cu in [cc]	4.90 [80.3]
Force @ 6 inHG: lb [n]	28.00 [125.0]
Force @ 18 inHG: lb [n]	78.00 [347.0]
Minimum Radius: in [mm]	3.60 [91.5]
Shear Load²: lb [n]	53.00 [236.0]

Multi-Bellows Vacuum Cups

Multi-bellows vacuum cups are made with shallow-fold bellows plus a thin, shallow sealing lip that allows it to conform to flexible packaging and other thin workpieces. The shallow-fold bellows cannot withstand deep vacuum unless it is fully collapsed. Do not try to use the bellows movement to lift a workpiece or the cup can collapse radially inward. Our multibellows vacuum cups include both internal and external stiffening ring features to reduce the possibility of radial collapse where other brands do not. The stiffening ring also provides stability when the cup is fully collapsed.

Suitable Workpiece Surface:

- Flat
- Convex
- Compound
- Cylindrical
- Flexible
- Plastic Film

Multi-Bellows Vacuum Cups

		p Size		up Material	Cup	tting
XP-BL	30		A		-G14F	
	20	$\varnothing 20 \mathrm{~mm}$	A	Ameriflex	(Blank)	None
	30	$\varnothing 30 \mathrm{~mm}$	D	Duramax	See cup fittings for available threads.	
	40	$\varnothing 40 \mathrm{~mm}$	N	Nitrile / TPV		
	50	$\varnothing 50 \mathrm{~mm}$	S	Silicone		

XP-BL20

Cup Diameter: in [mm]	20 mm
Outer Diameter: in [mm]	0.79 [20.0]
Cup Height: in [mm]	0.86 [21.8]
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	$0.51[13.0]$
Cup Weight: oz [g]	0.07 [2.0]
Internal Volume: cu in [cc]	$0.24[3.9]$
Force @ 6 inHG: lb [n]	$0.70[3.1]$
Force @ 18 inHG: lb [n]	$1.40[6.2]$
Minimum Radius: in [mm]	$0.16[4.1]$

XP-BL40

Cup Diameter: in [mm]	40 mm
Outer Diameter: in [mm]	1.57 [39.9]
Cup Height: in [mm]	$1.61[40.8]$
Thru Hole: in [mm]	$0.29[7.4]$
Stroke: in [mm]	$0.98[24.9]$
Cup Weight: oz [g]	$0.43[12.2]$
Internal Volume: cu in [cc]	$1.6[26.2]$
Force @ 6 inHG: lb [n]	$2.50[11.1]$
Force @ 18 inHG: $\mathrm{lb}[\mathrm{n}]$	$4.90[21.8]$
Minimum Radius: in [mm]	$0.60[15.2]$

XP-BL30

Cup Diameter: in [mm]	30 mm
Outer Diameter: in [mm]	$1.18[30.0]$
Cup Height: in [mm]	$1.22[30.9]$
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	$0.79[20.1]$
Cup Weight: oz [g]	$0.21[6.0]$
Internal Volume: cu in [cc]	$0.80[13.1]$
Force @ 6 inHG: lb [n]	$1.40[6.2]$
Force @ 18 inHG: lb [n]	$3.60[16.0]$
Minimum Radius: in [mm]	$0.31[7.9]$

XP-BL50

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	1.97 [50.0]
Cup Height: in [mm]	2.01 [51.1]
Thru Hole: in [mm]	0.36 [9.1]
Stroke: in [mm]	$1.10[27.9]$
Cup Weight: oz [g]	$0.82[23.2]$
Internal Volume: cu in [cc]	$3.40[55.7]$
Force @ 6 inHG: lb [n]	$3.80[16.9]$
Force @ 18 inHG: lb [n]	$9.60[42.7]$
Minimum Radius: in [mm]	$0.60[15.2]$

Deep Vacuum Cups

Deep vacuum cups are used for highly curved or irregular surfaces and can even seal against corners, edges, and spherical workpiece. Deep vacuum cups are unsuitable for use on flat surfaces because the lip will be overstretched and the resultant scrubbing could leave marks on the workpiece.

Suitable Workpiece Surface:

- Convex
- Spherical
- Cylindrical

Deep Vacuum Cups

	Cup Size		Cup Material		Cup Fitting	
XP-D		15		S	-5	
	15	$\varnothing 15 \mathrm{~mm}$	N	Nitrile / TPV	(Blank)	None
	20	$\varnothing 20 \mathrm{~mm}$	S	Silicone	See cup fittings for available threads.	
	30	$\emptyset 30 \mathrm{~mm}$				
	40	$\varnothing 40 \mathrm{~mm}$				
	50	$\varnothing 50 \mathrm{~mm}$				

XP-D40

Cup Diameter: in [mm]	40 mm
Outer Diameter: in [mm]	1.66 [42.1]
Cup Height: in [mm]	$0.98[25.0]$
Thru Hole: in [mm]	$0.29[7.4]$
Stroke: in [mm]	$0.31[7.9]$
Cup Weight: oz [g]	$0.30[8.5]$
Internal Volume: cu in [cc]	$0.80[13.0]$
Force @ 6 inHG: lb [n]	5.40 [24.0]
Force @ 18 inHG: Ib [n]	$11.30[50.3]$
Minimum Radius: in [mm]	$0.65[16.5]$

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	$2.05[52.1]$
Cup Height: in [mm]	$1.20[30.5]$
Thru Hole: in [mm]	$0.36[9.1]$
Stroke: in [mm]	$0.39[9.9]$
Cup Weight: oz [g]	0.54 [15.3]
Internal Volume: cu in [cc]	$1.40[23.0]$
Force @ 6 inHG: lb [n]	$8.10[36.0]$
Force @ 18 inHG: lb [n]	$17.00[75.6]$
Minimum Radius: in [mm]	$0.98[24.9]$

Flat Vacuum Cups

Flat vacuum cups are like universal cups except they have cleats on the bottom which serve as traction surfaces and support the workpiece being lifted to prevent or limit deformation. The cleats limit deflection and maintain a larger exposed area to vacuum for a firm grip on the workpiece.

Flat vacuum cups have high stability and traction but a very short stroke. They should be used primarily for flat workpieces or sheet goods such as cardboard, corrugated board, and dry sheet metal. Flat vacuum cups will not work well with thin workpieces such as plastic sheet goods or flexible packaging.

Flat vacuum cups have very little angular compensation ability so they should always pick up perpendicular to a flat workpiece surface.

Suitable Workpiece Surface:

- Flat
- Shear Loads

Flat Vacuum Cups

	Cup Size			up Material	Cup	tting
XP-F	20			A	-14M	
	15	$\varnothing 15$ mm	A	Ameriflex ${ }^{1}$	(Blank)	None
	20	$\varnothing 20 \mathrm{~mm}$	D	Duramax ${ }^{1}$	See cup fittings for available threads.	
	25	$\varnothing 25 \mathrm{~mm}$	N	Nitrile / TPV		
	30	$\varnothing 30 \mathrm{~mm}$	S	Silicone		
			V	Viton		

${ }^{1}$ Not available on XP-F15.

XP-F15

Cup Diameter: in [mm]	15 mm
Outer Diameter: in [mm]	$0.65[16.5]$
Cup Height: in [mm]	$0.45[11.4]$
Thru Hole: in [mm]	$0.14[3.6]$
Stroke: in [mm]	$0.03[0.8]$
Cup Weight: oz [g]	$0.03[0.85]$
Internal Volume: cu in [cc]	$0.20[0.3]$
Force @ 6 inHG: lb [n]	$0.80[3.6]$
Force @ 18 inHG: lb [n]	$1.90[8.5]$
Minimum Radius: in [mm]	$0.51[13.0]$
Shear Load*: lb [n]	$0.90[4.0]$

XP-F25

Cup Diameter: in [mm]	25 mm
Outer Diameter: in [mm]	$1.06[26.9]$
Cup Height: in [mm]	$0.37[9.4]$
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	$0.06[1.5]$
Cup Weight: oz [g]	0.06 [1.7]
Internal Volume: cu in [cc]	0.07 [1.2]
Force @ 6 inHG: Ib [n]	$2.00[8.9]$
Force @ 18 inHG: lb [n]	$4.30[19.1]$
Minimum Radius: in [mm]	$0.98[24.9]$
Shear Load*: lb [n]	$2.10[9.3]$

XP-F20

Cup Diameter: in [mm]	20 mm
Outer Diameter: in [mm]	0.87 [22.1]
Cup Height: in [mm]	0.34 [8.7]
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	0.06 [1.5]
Cup Weight: oz [g]	0.05 [1.4]
Internal Volume: cu in [cc]	0.06 [1.0]
Force @ 6 inHG: lb [n]	$1.30[5.8]$
Force @ 18 inHG: Ib [n]	$3.30[14.7]$
Minimum Radius: in [mm]	$0.71[7.6]$
Shear Load*: Ib [n]	$1.70[7.6]$

All Flat Cups have cleats.

XP-F30

Cup Diameter: in [mm]	30 mm
Outer Diameter: in [mm]	$1.26[32.0]$
Cup Height: in [mm]	$0.41[10.4]$
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	0.09 [2.3]
Cup Weight: oz [g]	0.08 [2.3]
Internal Volume: cu in [cc]	$0.12[2.0]$
Force @ 6 inHG: lb [n]	$2.70[12.0]$
Force @ 18 inHG: lb [n]	$5.60[24.9]$
Minimum Radius: in [mm]	$0.98[24.9]$
Shear Load*: lb [n]	$2.80[12.5]$

Flat Vacuum Cups

	Cup Size		Cup Material ${ }^{1}$		Cup Fitting	
XP-F	50		D		-38M	
	40	$\varnothing 40 \mathrm{~mm}$	A	Ameriflex	(Blank)	None
	50	$\varnothing 50 \mathrm{~mm}$	D	Duramax	See cup fittings for available threads.	
	65	$\varnothing 65 \mathrm{~mm}$	N	Nitrile / TPV		
	90	$\varnothing 90 \mathrm{~mm}^{2}$	S	Silicone ${ }^{1}$		
			V	Viton ${ }^{1}$		

${ }^{1}$ Not available on XP-F65 or XP-F90.
${ }^{2}$ Uses 65 mm Cup Fittings.

XP-F65

Cup Diameter: in [mm]	65 mm
Outer Diameter: in [mm]	2.75 [69.9]
Cup Height: in [mm]	0.82 [20.9]
Thru Hole: in [mm]	0.50 [12.7]
Stroke: in [mm]	0.15 [2.5]
Cup Weight: oz [g]	0.51 [14.5]
Internal Volume: cu in [cc]	1.46 [24.0]
Force @ 6 inHG: lb [n]	9.00 [40.0]
Force @ 18 inHG: lb [n]	22.00 [98.0]
Minimum Radius: in [mm]	5.50 [140.0]
Shear Load*: lb [n]	11.00 [49.0]

All Flat Cups have cleats.

XP-F50

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	2.09 [53.1]
Cup Height: in [mm]	0.69 [17.5]
Thru Hole: in [mm]	0.36 [9.1]
Stroke: in [mm]	$0.12[3.0]$
Cup Weight: oz [g]	$0.40[11.3]$
Internal Volume: cu in [cc]	0.61 [10.0]
Force @ 6 inHG: lb [n]	$8.10[36.0]$
Force @ 18 inHG: lb [n]	$16.6[73.8]$
Minimum Radius: in [mm]	$2.17[55.1]$
Shear Load*: lb [n]	$8.30[36.9]$

XP-F90

Cup Diameter: in [mm]	90 mm
Outer Diameter: in [mm]	3.54 [89.9]
Cup Height: in [mm]	$1.06[26.9]$
Thru Hole: in [mm]	$0.50[12.7]$
Stroke: in [mm]	$0.20[5.2]$
Cup Weight: oz [g]	$1.10[31.0]$
Internal Volume: cu in [cc]	$2.93[48.0]$
Force @ 6 inHG: lb [n]	$24.00[106.8]$
Force @ 18 inHG: lb [n]	$60.00[266.9]$
Minimum Radius: in [mm]	$7.20[183.0]$
Shear Load*: lb [n]	$30.00[133.4]$

Flat Vacuum Cups

	Cup Size			Cup Material	Cup Fitting	
XP-F	110			S	-38F	
	75	$\varnothing 75 \mathrm{~mm}$	A	Ameriflex	(Blank)	None
	110	$\varnothing 110$ mm	N	Nitrile / TPV	See cup fittings for available threads.	
	150	$\varnothing 150 \mathrm{~mm}$	S	Silicone		
			V	Viton		

All Flat Cups have cleats.

XP-F75

Cup Diameter: in [mm]	75 mm
Outer Diameter: in [mm]	3.08 [78.2]
Cup Height*: in [mm]	0.99 [25.1]
Stroke: in [mm]	0.09 [2.3]
Cup Weight: oz [g]	1.00 [28.3]
Internal Volume: cu in [cc]	1.20 [19.7]
Force @ 6 inHG: lb [n]	18.00 [80.1]
Force @ 18 inHG: lb [n]	45.00 [20.0]
Minimum Radius: in [mm]	5.90 [150.0]
Shear Load*: lb [n]	23.00 [102.0]

XP-F110

Cup Diameter: in [mm]	110 mm
Outer Diameter: in [mm]	4.44 [112.8]
Cup Height*: in [mm]	$1.30[33.0]$
Stroke: in [mm]	$0.21[5.3]$
Cup Weight: oz [g]	$3.10[87.9]$
Internal Volume: cu in [cc]	$4.30[70.5]$
Force @ 6 inHG: lb [n]	$32.00[142.0]$
Force @ 18 inHG: lb [n]	94.00 [418.0]
Minimum Radius: in [mm]	$9.80[249.0]$
Shear Load*: lb [n]	$47.00[209.0]$

XP-F150

Cup Diameter: in [mm]	150 mm
Outer Diameter: in [mm]	$6.00[152.4]$
Cup Height*: in [mm]	$1.49[37.9]$
Stroke: in [mm]	0.33 [8.4]
Cup Weight: oz [g]	$7.30[207.0]$
Internal Volume: cu in [cc]	$9.80[161.0]$
Force @ 6 inHG: lb [n]	67.00 [298.0]
Force @ 18 inHG: lb [n]	$191.00[850.0]$
Minimum Radius: in [mm]	$19.70[500.0]$
Shear Load*: lb [n]	$95.00[422.0]$

Flat Vacuum Cups

XP-F240

Cup Diameter: in [mm]	240 mm
Outer Diameter: in [mm]	$9.70[246.4]$
Cup Height: in [mm]	$1.50[38.2]$
Stroke: in [mm]	$0.62[15.7]$
Cup Weight: oz [g]	$2.80[1.3]$
Internal Volume: cu in [cc]	$33.00[541.0]$
Force @ 18 inHG: lb [n]	450.00 [2002.0]
Minimum Radius: in [mm]	20.00 [508.0]
Shear Load*: lb [n]	$225.00[1001.0]$

Flat-Concave Vacuum Cups

Flat-concave vacuum cups have a dished bottom plus conforming cleats for use with flat or slightly domed or convex workpieces. The outer lip is reinforced for extra strength and extended life while the cleats provide superior traction to resist later shear loads.

Flat-concave vacuum cups have slight angular compensation ability so they should always be picked up perpendicular to a flat workpiece surface.

Suitable Workpiece Surface:

- Convex
- Spherical
- Shear Loads

Flat-Concave Vacuum Cups

All Flat-Concave Cups have cleats.

XP-FC50

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	1.97 [50.0]
Cup Height: in [mm]	0.75 [19.1]
Thru Hole: in [mm]	0.36 [9.1]
Stroke: in [mm]	0.25 [6.4]
Cup Weight: oz [g]	$0.30[7.9]$
Internal Volume: cu in [cc]	$0.70[11.5]$
Force @ 6 inHG: lb [n]	$7.80[34.7]$
Force @ 18 inHG: lb [n]	$19.00[84.5]$
Minimum Radius: in [mm]	$2.09[53.1]$
Shear Load*: lb [n]	$10.00[44.5]$

	Cup Material			Fitting
XP-FC75	S		38F	
	N	Nitrile / TPV	38F	3/8 NPSF Female
	S	Silicone	G38M	G 3/8 Male

XP-FC75-38F

Cup Diameter: in [mm]	75 mm
Outer Diameter: in [mm]	2.95 [75.0]
Cup Height: in [mm]*	1.46 [37.1]
Stroke: in [mm]	0.36 [9.1]
Cup Weight: oz [g]	1.70 [48.2]
Internal Volume: cu in [cc]	1.80 [29.5]
Force @ 6 inHG: lb [n]	17.00 [75.6]
Force @ 18 inHG: lb [n]	35.00 [154.0]
Minimum Radius: in [mm]	2.80 [71.1]
Shear Load*: lb [n]	45.00 [200.0]

XP-FC75-G38M

Cup Diameter: in [mm]	75 mm
Outer Diameter: in [mm]	$2.95[75.0]$
Cup Height: in [mm]	1.33 [33.7]
Stroke: in [mm]	0.36 [9.1]
Cup Weight: oz [g]	$1.70[48.2]$
Internal Volume: cu in [cc]	$1.80[29.5]$
Force @ 6 inHG: Ib [n]	17.00 [75.6]
Force @ 18 inHG: Ib [n]	$35.00[154.0]$
Minimum Radius: in [mm]	$2.80[71.1]$
Shear Load*: Ib [n]	$45.00[200.0]$

Flat-Concave Vacuum Cups

		p Material	Cup	ting
XP-FC100		N	-18F	
	N	Nitrile / TPV	See 75 mm cup fittings for available threads.	
	S	Silicone	See 75 mm cup fittings for available threads.	

XP-FC100

Cup Diameter: in [mm]	100 mm
Outer Diameter: in [mm]	$3.94[100.1]$
Cup Height: in $[\mathrm{mm}]^{*}$	$1.57[40.0]$
Stroke: in [mm]	$0.48[12.2]$
Cup Weight: oz [g]	$1.90[54.0]$
Internal Volume: cu in [cc]	$4.90[80.3]$
Force @ 6 inH: $\mathrm{lb}[\mathrm{n}]$	$31.00[138.0]$
Force @ 18 inHG: lb [n]	$64.00[285.0]$
Minimum Radius: in [mm]	$4.30[109.0]$
Shear Load*: lb [n]	$53.00[236.0]$

Oval Vacuum Cups

Oval vacuum cups come in two styles. Oval concave (OC) vacuum cups are like universal cups except the cup is elongated to provide a larger surface area and thus a stronger grip. Oval flat (OF) vacuum cups have bottom cleats to maintain a larger area exposed to vacuum. Because of this, the cleats reduce the stroke by almost half. They should only be used on flat or very slightly curved surfaces.

Oval vacuum cups can seal to cylindrical object but only along the cup long axis (be mindful of minimum radius). Whenever possible, use several round vacuum cups instead of oval vacuum cups as round vacuum cups are more forgiving of mounting misalignment and workpiece deflection.

OC Suitable Workpiece Surface:

- Flat
- Convex
- Cylindrical

OF Suitable Workpiece Surface:

- Flat
- Cylindrical
- Shear Loads

Oval Vacuum Cups

Cup Style				up Material		Threads
OC		-60X140-	S		-G	
OC	Concave		N	Nitrile / TPV	(Blank)	NPTF Threads
OF	Flat		S	Silicone	-G	G Threads

	OC	OF
Cup Dimensions: in [mm]	$60 \mathrm{~mm} \times 140 \mathrm{~mm}$	
Cup Height: in [mm]*	1.57 [40.0]	
Stroke: in [mm]	0.29 [7.4]	0.18 [4.6]
Cup Weight: oz [g]	4.10 [116.0]	4.20 [119.0]
Internal Volume: cu in [cc]	3.20 [52.4]	3.00 [49.2]
Force @ 6 inHG: lb [n]	29.00 [129.0]	
Force @ 18 inHG: Ib [n]	83.00 [369.0]	
Minimum Radius: in [mm]	1.50 [38.1]	3.00 [76.2]
Shear Load*: lb [n]	41.00 [182.0]	

Code	Function	NPTF	G
1	Vacuum Port	$3 / 8-18$ NPTF	G 3/8
2	Mounting Holes	$5 / 16-18$ UNC	M8x1.25

Universal Vacuum Cups

Universal vacuum cups are like flat vacuum cups except they have no bottom cleats. As a result, deflection is higher than flat vacuum cups and the cup area exposed to vacuum becomes smaller as vacuum level deepens and the cup lips flatten out. Under a heavy pull, a universal vacuum cup will "tent" up and the effective vacuum area will increase until it equals that of a flat vacuum cup, at which point, it will have similar load capacity.

Thin workpiece materials can be drawn in toward the cup center and essentially seal of vacuum from the universal vacuum cup lips so that the effective area becomes so small that the cup cannot pick up the workpiece safely.

Universal vacuum cups have very little angular compensation ability so they should always pick up perpendicular to a flat workpiece surface.

Suitable Workpiece Surface:

- Flat
- Slightly Concave
- Convex
- Compound
- Cylindrical
- Flexible

Universal Vacuum Cups

		p Size		up Material	Cup	tting
XP-U		8		S	-10	
	4	$\varnothing 4$ mm	N	Nitrile / TPV	(Blank)	None
	6	$\emptyset 6$ mm	S	Silicone	See cup fittings for available threads.	
	8	$\emptyset 8$ mm	V	Viton ${ }^{1}$		
	10	$\varnothing 10 \mathrm{~mm}$				
	15	$\varnothing 15$ mm				

${ }^{1}$ 'Only available for XP-U4 and XP-U10

Cup Diameter: in [mm]	10 mm
Outer Diameter: in [mm]	$0.43[11.0]$
Cup Height: in [mm]	$0.41[10.4]$
Thru Hole: in [mm]	$0.14[3.6]$
Stroke: in [mm]	$0.02[0.5]$
Cup Weight: oz [g]	$0.03[10.9]$
Internal Volume: cu in [cc]	$0.01[0.2]$
Force @ 6 inHG: lb [n]	$0.34[0.5]$
Force @ 18 inHG: lb [n]	$1.00[4.5]$
Minimum Radius: in [mm]	$0.31[7.9]$

XP-U15

Cup Diameter: in [mm]	15 mm
Outer Diameter: in [mm]	$0.65[16.5]$
Cup Height: in [mm]	0.45 [11.4]
Thru Hole: in [mm]	0.14 [3.6]
Stroke: in [mm]	$0.06[1.5]$
Cup Weight: oz [g]	$0.03[0.9]$
Internal Volume: cu in [cc]	$0.03[0.5]$
Force @ 6 inHG: lb [n]	$0.80[3.6]$
Force @ 18 inHG: Ib [n]	$1.90[8.5]$
Minimum Radius: in [mm]	$0.31[7.9]$

Universal Vacuum Cups

	Cup Size		Cup Material		Cup Fitting	
XP-U	25			N	-14M	
	20	$\varnothing 20 \mathrm{~mm}$	N	Nitrile / TPV	(Blank)	None
	25	$\varnothing 25$ mm	S	Silicone	See cup fittings for available threads.	
	30	$\varnothing 30 \mathrm{~mm}$				
	40	$\varnothing 40 \mathrm{~mm}$				
	50	$\varnothing 50 \mathrm{~mm}$				

XP-U20

Cup Diameter: in [mm]	20 mm
Outer Diameter: in [mm]	$0.87[22.1]$
Cup Height: in [mm]	$0.34[8.7]$
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	$0.10[2.5]$
Cup Weight: oz [g]	$0.04[1.1]$
Internal Volume: cu in [cc]	$0.06[1.0]$
Force @ 6 inHG: lb [n]	$1.30[5.8]$
Force @ 18 inHG: lb [n]	$2.70[12.0]$
Minimum Radius: in [mm]	$0.51[13.0]$

XP-U25

Cup Diameter: in [mm]	25 mm
Outer Diameter: in [mm]	1.06 [26.9]
Cup Height: in [mm]	0.38 [9.6]
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	$0.10[2.5]$
Cup Weight: oz [g]	0.06 [1.7]
Internal Volume: cu in [cc]	0.07 [1.1]
Force @ 6 inHG: lb [n]	$2.00[8.9]$
Force @ 18 inHG: lb [n]	$4.40[19.6]$
Minimum Radius: in [mm]	$0.65[16.5]$

XP-U30

Cup Diameter: in [mm]	30 mm
Outer Diameter: in [mm]	$1.26[32.0]$
Cup Height: in [mm]	0.41 [10.4]
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	0.14 [3.6]
Cup Weight: oz [g]	0.07 [2.0]
Internal Volume: cu in [cc]	$0.12[2.0]$
Force @ 6 inHG: lb [n]	$2.70[12.0]$
Force @ 18 inHG: lb [n]	$5.60[24.9]$
Minimum Radius: in [mm]	$0.79[20.1]$

XP-U40

Cup Diameter: in [mm]	40 mm
Outer Diameter: in [mm]	1.66 [42.2]
Cup Height: in [mm]	0.55 [13.9]
Thru Hole: in [mm]	0.29 [7.4]
Stroke: in [mm]	$0.18[4.6]$
Cup Weight: oz [g]	0.17 [4.8]
Internal Volume: cu in [cc]	0.34 [5.6]
Force @ 6 inHG: lb [n]	$4.50[20.0]$
Force @ 18 inHG: lb [n]	$8.80[39.1]$
Minimum Radius: in [mm]	$1.18[30.0]$

XP-U50

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	2.10 [53.3]
Cup Height: in [mm]	0.69 [17.6]
Thru Hole: in [mm]	0.36 [9.1]
Stroke: in [mm]	0.24 [6.1]
Cup Weight: oz [g]	0.35 [9.9]
Internal Volume: cu in [cc]	0.73 [12.0]
Force @ 6 inHG: Ib [n]	7.90 [35.1]
Force @ 18 inHG: lb [n]	$16.40[73.0]$
Minimum Radius: in [mm]	1.38 [35.1]

EC34S-30R: Egg Picking Vacuum Cup

Egg picking vacuum cups are double-bellows cups with a conical lower lip designed to gently grip eggs in a wide range of sizes. The lower bellows and lip collapse and nest inside the larger upper lip to provide stability under shallow vacuum levels that will not harm the egg shell. Common applications are sorting, incubation, rejection, or inoculation of eggs. Egg vacuum cups come in one material: brick-red, 30 Shore-A silicone rubber.

Vacuum Cup Fittings Assembly

Secure a block tee or other suitable pipe fitting in a vise to make a simple fixture as shown in the illustration.

Screw the cup fitting onto the fixture about 2 thread turns, by hand.

Dip your finger into a small container of water and wipe a few drops onto the fitting flange and into the top chamfer and bore of the vacuum cup. Use only water. Do not use any soap or oil. Water will quickly evaporate and leave no residue which could later affect performance.

Invert the vacuum cup and place it onto the flange as shown. Grasp the far side of the cup and pull it over the flange while apply downward pressure. After the cup snaps over the flange, rotate the cup on the fitting about $1 / 2$ turn to make sure it is properly seated.

Elastomer Properties

Ameriflex (A)

For general-purpose, normal ambient temperature applications as a replacement for competitors' PVC vinyl cups.

Duramax (D) ${ }^{4}$

Softer, non-staining, non-marking, general-purpose material for high visibility surfaces at normal ambient temperatures.

Nitrile / TPV (N)

For general-purpose, normal ambient temperature applications. Some cups are Nitrile while others are TPV. If this specification is important for your application, contact us and we can let you know which material each cup is made of.

Code	Elastomer	Wear Resistance	Working Temperature ${ }^{2}$	Weight Ratio	Color	Durometer Shore-A
A	Ameriflex	Excellent	-4° to $230^{\circ} \mathrm{F}$ -20° to $110^{\circ} \mathrm{C}$	0.85	Yellow	50
D	Duramax	Excellent	-4° to $230^{\circ} \mathrm{F}$ -20° to $110^{\circ} \mathrm{C}$	0.85	White	45
S	Sitrile / TPV	Excellent	-4° to $230^{\circ} \mathrm{F}$ -20° to $110^{\circ} \mathrm{C}$	1.0	Black	50
CS	Conductive Silicone	Good	-100° to $400^{\circ} \mathrm{F}$ -70° to $205^{\circ} \mathrm{C}$ -100° to $400^{\circ} \mathrm{F}$ -70° to $205^{\circ} \mathrm{C}$	1.06	Orange	50
V	Fluorocarbon (Viton $)$	Excellent	40° to $450^{\circ} \mathrm{F}$			
4° to $230^{\circ} \mathrm{C}$	1.78	Gray	60			

${ }^{1}$ Viton is a registered trademark of DuPont Dow.
${ }^{2}$ Continous service temperature. Intermittent service may possibly be higher. Determine via testing under actual conditions.
${ }^{3}$ Weight of Nitrile cup without fitting is tabulated. Use the ratio multiplier for other materials.
${ }^{4}$ The terms non-staining and non-marking refer only to the cup material. Airborne aerosols that attach to the cup surface or direct cup contact with dirty surfaces can result in residue transfer marks. Proper maintenance is important. Use only soap and water to wipe cups clean after installation and periodically afterward to remove airborne contaminants.
${ }^{5}$ EDCO products are made with synthetic, rubber-like materials. As such, EDCO products do not contain latex.
${ }^{6}$ All figures for shear load are 18 inHg using a 0.5 coefficient of friction. Adjust coefficient of friction to suit your conditions, then apply a generous factor of safety (3:1 or greater) to shear loads.

