EDCO USA ${ }^{\circ}$

Product Catalog

FDIU LS5A

Vacuum Cups

Bellows	2	Flat	2
Double Bellows	2	Flat-Concave	
Bellows Flat	2	Oval	2
Multi-Bellows	2	Universal	2
Deep	2	Egg	2

Vacuum Cup Fittings

\varnothing 4-8 mm Cups	3	$\varnothing 50 \mathrm{~mm}$ Cups	3
$\varnothing 10-15 \mathrm{~mm}$ Cups	3	$\varnothing 65 \mathrm{~mm}$ Cups	3
$\varnothing 20-35 \mathrm{~mm}$ Cups	3	$\varnothing 75-150 \mathrm{~mm}$ Cups	3
$\varnothing 40 \mathrm{~mm}$ Cups	3	Fitting Accessories	3

Vacuum Cup Accessories

Dual-Flow Valves
Tri-Flow Valves
Flow Sensor Valves
Check Valves
Cone Valves

Atmospheric Quick Release	4
Swivel Joints	4
Tee Adapters	4
Level Compensators	4

Vacuum System Accessories

Vacustat	5	Vacuum Switch Protector	5
Mechanical Switches	5	Filters	5
Electronic Sensors	5	Pipe Plugs	5
Digital Sensors	5	Silencers	5

Vacuum Pumps

AX Series	6	J Series	13
Chip Pumps	7	EV Series	
Classic Pumps	8	V Series	14
VG \& VQ Series	9	SM Series	14
ER Series	10	Variable Displacement Pumps	14
Vacuum Grippers	11	Air Amplifiers	14
Rail Systems	12	Material Transfer Pumps	14

End of Arm Tooling

EMAT - EDCO Modular Automation Tooling	16	RQCP - Robotic Quick Change Pump	16
QCS - Quick Change Slides	16	Micro-Tooling (End of Arm Tooling)	16

EVU - EDCO Vacuum University

Basic Vacuum Training17

Quality, Performance, \& Value

Founded in 1994, EDCO USA designs and markets wellmade and cost-effective vacuum related automation devices that are manufactured in the USA. Over the years, EDCO has developed a wide range of rugged vacuum components such as: Vacuum Cups, Vacuum Pads, Level Compensators, Multi-Stage / Multi-Ejector Vacuum Pumps, Single-Stage / Mono-Stage Vacuum Pumps, Vacuum Check Valves, Vacuum Grippers, and Rail Systems.

In addition to standard catalog products, EDCO designs customized or made-for-purpose products for customers where a standard product doesn't quite fit the task. Quantities required for "special" products can be surprisingly low. Call us to discuss your project.

EDCO is the industry leader in vacuum technology. We provide engineered solutions to vacuum system problems. Modular pump design allows for field expansion of pump capacity and simplified, cost-effective pump renewal. To make our design process simpler, EDCO has the widest range of integrated pump control options and system accessories of any manufacturer.

High quality, superior performance, fast delivery, and lower prices means VALUE by any definition. Our business structure doesn't require layers of management or other expensive overhead and that translates to lower prices.

EDCO markets through a network of fluid power distributors so that knowledgeable sales engineers can provide prompt local support for your design projects and offer OEM pricing that is as good as factory-direct.

Private Labeling is available for OEM customers at no extra charge. Simply provide us with your DXF or vector file with your logo, part number, and any additional information desired. Initial orders must be for at least 5 units while additional orders can be for any quantity.

Reliable \& Verifiable

We don't believe that wild marketing claims provide any benefit to our customers. We leave that to our competitors. We'll be glad to prove that EDCO products provide the best solution for your application.

We continually develop new products and custom designs that may not yet appear in our catalog. If you don't find what you are looking for, call us. We may already have the solution for you.

Please contact your local EDCO distributor for assistance with any vacuum component or system. While we prefer having our distributors involved from the start, call us if you need immediate assistance and we will have our distributor follow up.

Five Year Warranty

EDCO USA products are warranted to be free of defects in workmanship and materials for a period of 5 years from the date of purchase.

While products found by EDCO USA to be defective will be replaced, no liability is assumed beyond such replacement and there are no other warranties of any sort expressed or implied.

EDCO USA is not responsible for damage done to products through neglect.

The specifications in this catalog are believed to be accurate and reliable. However, it is the responsibility of the purchaser / user to determine the suitability of EDCO USA's products for specific use and to apply those products safely.

All performance data presented is a representation of production pumps but is not a guarantee due to variations in local barometric pressure and of mass produced components.

Vacuum Cups \& Fittings

Competitor, 2-Piece
The full load must be carried by this thin section which stretches and reduces cup capability. Over stressing causes the rubber to fatigue and crack.

Competitor, 1-Piece
Small fitting flange poorly distributes the load to rubber and pull-out can occur unless a strengthening ring is used.

EDCO USA, 1-Piece
Larger flange has 2.5 times the area of the competitor's flange. Load is evenly distributed to a reinforced cup top for lower stress, longer life, and increased stability.

Vacuum Pumps

EDCO offers six ejector series in eight pump capacities. (A, E, L, M, ML \& X)
EDCO offers twice the capacity in only 70\% of the footprint area.
EDCO's stainless steel valve has 128% more flow area than the competitor plastic valve.
EDCO USA, Classic Pumps

Competitor, Classic Style Pumps

Updated 08/30/22

XP-F90 has a lower list price than XP-F110
by utilizing snap-in cup fittings.

Pumps w/ Integrated Filters

Integrated Filter Bases for Classic Pumps, Vacuum Grippers, and ER Pumps

Gripper Fingers

20 mm \& 30 mm Gripper Fingers
Replaces: EMI, ASS, Gimatic

VGP Style Vacuum Gripper

Atmospheric Quick-Release

Replaces Piab AQR 0111236 \& AQR 020119721

VG-G12 Style Vacuum Gripper

Replaces Piab VGS 5010 Pumps
J-Series Vacuum Pumps

Replaces Anver JB-Series or Coval GVP-Series

Aluminum Base Vacuum Filters

Easier to Mount than Tee-Style Filters
Nipper Bodies

20 mm \& 30 mm Nipper Bodies
Accepts Vessel, Gimatic, or Swanstrom Blades

Replaces Gast Multi-Stage Pumps

VQ-Series Pumps

Replaces Vac-Cubes Multi-Stage Pumps

Coolant Oil Skimmer for CNC Machines

Vacuum Cups
 Section 2

FDPD LISA

Bellows

Bellows Flat

Flat-Concave

Oval

Bellows	3
Double Bellows	8
Bellows Flat	10
Multi-Bellows	12
Deep	14
Flat	16
Flat-Concave	21
Oval	24
Universal	26
Egg	29
Information	30

Bellows Vacuum Cups

Bellows vacuum cups are used when it is necessary to compensate for varying workpiece heights, to handle parts with uneven (concave, convex, or textured) surfaces, or easily damaged parts. A lifting effect during evacuation can be used to help separate a top sheet from those stacked below. Bellows vacuum cups can conform to curved or uneven workpieces such as pipes, bottles, containers, cylinders, car body components, flexing cardboard boxes, etc. Bellows vacuum cups provide height compensation and a ball-join motion through a limited angular range.

Suitable Workpiece Surface:

- Flat
- Slightly Concave
- Convex
- Compound
- Spherical
- Cylindrical
- Flexible
- Shear Loads

Bellows Vacuum Cups

${ }^{1}$ Not available on XP-B15 or XP-B20.
${ }^{2}$ Not available on $X P-B 5, X P-B 8$, or $X P-B 10$.

XP-B5

Cup Diameter: in [mm]	5 mm
Outer Diameter: in [mm]	$0.24[6.1]$
Cup Height: in [mm]	$0.37[9.3]$
Thru Hole: in [mm]	$0.08[2.0]$
Stroke: in [mm]	$0.06[1.5]$
Cup Weight: oz [g]	$0.004[0.11]$
Internal Volume: cu in [cc]	$0.01[0.2]$
Force @ 6 inHG: lb [n]	$0.07[0.3]$
Force @ 18 inHG: lb [n]	$0.10[0.4]$
Minimum Radius: in [mm]	$0.06[1.5]$
Shear Load*: lb [n]	$0.05[0.2]$

XP-B8

Cup Diameter: in [mm]	8 mm
Outer Diameter: in [mm]	$0.38[9.6]$
Cup Height: in [mm]	0.47 [12.0]
Thru Hole: in [mm]	$0.08[2.0]$
Stroke: in [mm]	$0.13[3.3]$
Cup Weight: oz [g]	$0.01[0.3]$
Internal Volume: cu in [cc]	$0.01[0.2]$
Force @ 6 inHG: lb [n]	$0.18[0.8]$
Force @ 18 inHG: lb [n]	$0.36[1.6]$
Minimum Radius: in [mm]	$0.07[1.8]$
Shear Load*: lb [n]	$0.18[0.8]$

XP-B10

Cup Diameter: in [mm]	10 mm
Outer Diameter: in [mm]	0.48 [12.2]
Cup Height: in [mm]	0.63 [16.0]
Thru Hole: in [mm]	0.14 [3.7]
Stroke: in [mm]	$0.18[4.5]$
Cup Weight: oz [g]	$0.03[0.9]$
Internal Volume: cu in [cc]	$0.03[0.5]$
Force @ 6 inHG: lb [n]	$0.3[1.3]$
Force @ 18 inHG: lb [n]	$0.8[3.6]$
Minimum Radius: in [mm]	$0.16[4.1]$
Shear Load*: lb [n]	$0.4[1.7]$

XP-B15

Cup Diameter: in [mm]	15 mm
Outer Diameter: in [mm]	0.70 [17.7]
Cup Height: in [mm]	0.79 [20.0]
Thru Hole: in [mm]	0.14 [3.7]
Stroke: in [mm]	$0.26[6.6]$
Cup Weight: oz [g]	$0.04[1.1]$
Internal Volume: cu in [cc]	0.07 [1.2]
Force @ 6 inHG: lb [n]	$0.70[3.1]$
Force @ 18 inHG: Ib [n]	$1.30[5.8]$
Minimum Radius: in [mm]	$0.20[5.1]$
Shear Load*: lb [n]	$0.70[3.1]$

XP-B20

Cup Diameter: in [mm]	20 mm
Outer Diameter: in [mm]	$0.94[23.9]$
Cup Height: in [mm]	0.69 [17.6]
Thru Hole: in [mm]	0.20 [5.1]
Stroke: in [mm]	$0.39[9.9]$
Cup Weight: oz [g]	0.08 [2.3]
Internal Volume: cu in [cc]	$0.16[2.6]$
Force @ 6 inHG: Ib [n]	$1.30[5.8]$
Force @ 18 inHG: Ib [n]	$2.20[9.8]$
Minimum Radius: in [mm]	$0.39[9.9]$
Shear Load*: Ib [n]	$1.10[4.8]$

*All figures for shear load are 18 inHg using a 0.5 coefficient of friction.
Adjust coefficient of friction to suit your conditions, then apply a generous factor of safety (3:1 or greater) to shear loads.

Bellows Vacuum Cups

	Cup Size			up Material	Cup	ting
XP-B	50			V	-38F	
	30	$\varnothing 30$ mm	A	Ameriflex	(Blank)	None
	40	$\varnothing 40 \mathrm{~mm}$	D	Duramax	See cup fittings for available threads.	
	50	$\varnothing 50 \mathrm{~mm}$	N	Nitrile / TPV		
	65	$\varnothing 65$ mm	S	Silicone ${ }^{1}$		
			V	Viton ${ }^{1}$		

${ }^{1}$ Not available on XP-B65.

XP-B30

Cup Diameter: in [mm]	30 mm
Outer Diameter: in [mm]	$1.42[36.1]$
Cup Height: in [mm]	$1.04[26.4]$
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	$0.59[14.9]$
Cup Weight: oz [g]	0.25 [7.1]
Internal Volume: cu in [cc]	$0.61[10.0]$
Force @ 6 inHG: lb [n]	$2.70[12.0]$
Force @ 18 inHG: Ib [n]	$4.90[21.8]$
Minimum Radius: in [mm]	$0.59[15.0]$
Shear Load*: lb [n]	$2.50[11.1]$

XP-B50

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	2.23 [56.6]
Cup Height: in [mm]	1.36 [34.7]
Thru Hole: in [mm]	0.36 [9.1]
Stroke: in [mm]	0.79 [20.0]
Cup Weight: oz [g]	0.66 [18.8]
Internal Volume: cu in [cc]	2.00 [32.8]
Force @ 6 inHG: Ib [n]	7.40 [32.9]
Force @ 18 inHG: lb [n]	14.60 [64.9]
Minimum Radius: in [mm]	$0.98[24.9]$
Shear Load*: lb [n]	$7.30[32.4]$

XP-B40

Cup Diameter: in [mm]	40 mm
Outer Diameter: in [mm]	$1.82[46.2]$
Cup Height: in [mm]	1.08 [27.4]
Thru Hole: in [mm]	$0.29[7.4]$
Stroke: in [mm]	$0.59[14.9]$
Cup Weight: oz [g]	0.35 [9.9]
Internal Volume: cu in [cc]	$0.90[14.7]$
Force @ 6 inHG: lb [n]	$4.90[21.8]$
Force @ 18 inHG: lb [n]	$8.80[39.1]$
Minimum Radius: in [mm]	$0.79[20.1]$
Shear Load*: lb [n]	$4.40[19.5]$

XP-B65

Cup Diameter: in [mm]	65 mm
Outer Diameter: in [mm]	$2.87[72.9]$
Cup Height: in [mm]	$1.66[42.2]$
Thru Hole: in [mm]	$0.50[12.7]$
Stroke: in [mm]	$0.90[22.9]$
Cup Weight: oz [g]	$1.30[36.9]$
Internal Volume: cu in [cc]	$3.90[63.9]$
Force @ 6 inHG: lb [n]	$13.30[59.2]$
Force @ 18 inHG: lb [n]	$26.30[117.0]$
Minimum Radius: in [mm]	$1.22[31.0]$
Shear Load*: lb [n]	$13.1[58.3]$

*All figures for shear load are 18 inHg using a 0.5 coefficient of friction.
Adjust coefficient of friction to suit your conditions, then apply a generous factor of safety (3:1 or greater) to shear loads.

Bellows Vacuum Cups

	Cup Size		Cup Material		Cup Fitting	
	75	$\varnothing 75 \mathrm{~mm}$	N	Nitrile / TPV	(Blank)	None
	110	$\varnothing 110 \mathrm{~mm}$	S	Silicone	See cup fittings XP-B for available threads.	
	150	$\varnothing 150 \mathrm{~mm}$	V	Viton	75	

Bellows Vacuum Cups

XP-B250

Cup Diameter: in [mm]	250 mm
Outer Diameter: in [mm]	$9.96[253.0]$
Cup Height: in [mm]	2.56 [65.0]
Stroke: in [mm]	1.44 [36.6]
Cup Weight: oz [g]	3.57 [1.62]
Internal Volume: cu in [cc]	$85.40[1400.0]$
Force @ 18 inHG: lb [n]	450.00 [2002.0]
Minimum Radius: in [mm]	10.00 [254.0]
Shear Load*: lb [n]	$225.00[1001.0]$

Double-Bellows Vacuum Cups

Double-bellows vacuum cups provide a longer stroke than single-bellows vacuum cups for greater ability to compensate for varying workpiece heights. This increased ability to compensate for varying heights does come at the cost of stability.

Our double-bellows vacuum cups include bottom cleats to help stabilize the cup when collapsed against a workpiece. The added traction surface increases the ability to withstand lateral shear loads. The cleats also help prevent flexible workpieces from deforming into the center of the cup when subjected to deep vacuum.

Suitable Workpiece Surface:

- Flat
- Slightly Concave
- Convex
- Compound
- Spherical
- Cylindrical
- Flexible
- Shear Loads

Double-Bellows Vacuum Cups

		Cup Size		Cup Material	Cup	tting
XP-2B		65		A		
	25	$\emptyset 25 \mathrm{~mm}$	A	Ameriflex	(Blank)	None
	35	$\varnothing 35 \mathrm{~mm}$	D	Duramax	See cup fittings for available threads.	
	50	$\varnothing 50 \mathrm{~mm}$	N	Nitrile / TPV		
	65	$\varnothing 65 \mathrm{~mm}$				

Cup Diameter: in [mm]	25 mm
Outer Diameter: in [mm]	1.02 [25.9]
Cup Height: in [mm]	0.74 [18.8]
Thru Hole: in [mm]	0.20 [5.1]
Stroke: in [mm]	0.38 [9.7]
Cup Weight: oz [g]	0.11 [3.1]
Internal Volume: cu in [cc]	0.18 [3.0]
Force @ 6 inHG: lb [n]	2.02 [9.0]
Force @ 18 inHG: Ib [n]	3.15 [14.0]
Minimum Radius: in [mm]	0.31 [7.9]

XP-2B50

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	2.09 [53.0]
Cup Height: in [mm]	$1.52[38.6]$
Thru Hole: in [mm]	0.36 [9.1]
Stroke: in [mm]	$0.82[20.8]$
Cup Weight: oz [g]	$0.85[24.1]$
Internal Volume: cu in [cc]	$1.83[30.0]$
Force @ 6 inHG: lb [n]	$8.32[37.0]$
Force @ 18 inHG: lb [n]	$13.30[59.2]$
Minimum Radius: in [mm]	$1.26[32.0]$

XP-2B35

Cup Diameter: in [mm]	35 mm
Outer Diameter: in [mm]	$1.46[37.0]$
Cup Height: in [mm]	1.04 [26.4]
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	0.59 [15.0]
Cup Weight: oz [g]	0.28 [7.9]
Internal Volume: cu in [cc]	0.61 [10.0]
Force @ 6 inHG: Ib [n]	3.37 [15.0]
Force @ 18 inHG: lb [n]	$5.62[25.0]$
Minimum Radius: in [mm]	$0.39[9.9]$

Cup Diameter: in [mm]	65 mm
Outer Diameter: in [mm]	2.87 [72.9]
Cup Height: in [mm]	2.37 [60.3]
Thru Hole: in [mm]	$0.50[12.7]$
Stroke: in [mm]	$1.30[33.0]$
Cup Weight: oz [g]	$2.20[63.0]$
Internal Volume: cu in [cc]	5.85 [95.9]
Force @ 6 inHG: lb [n]	$8.40[37.4]$
Force @ 18 inHG: lb [n]	$21.00[93.4]$
Minimum Radius: in [mm]	$1.22[31.0]$

Bellows Flat Vacuum Cups

The Bellows flat style vacuum cups combine the versatility of a Bellows cup with a large anti-skid tread pattern to provide maximum holding power and high resistance to shear loads even when lubrication is present. BF Cups are ideal for feeding sheet metal blanks to stamping presses or other robotic applications where it is necessary to resist loads caused by rapid acceleration and deceleration. Mounting bellows flat vacuum cups using the 22 mm wrench flats is quick and easy.

Suitable Workpiece Surface:

- Flat
- Slightly Concave
- Convex
- Compound
- Shear Loads

Bellows Flat Vacuum Cups

		Cup Size		Cup Material		Fitting
XP-BF	80		N		-38F	
	80	$\varnothing 80$ mm	N	Nitrile / TPV	-38F	3/8 NPSF Female
	100	$\varnothing 100 \mathrm{~mm}$				

XP-BF80

Cup Diameter: in [mm]	80 mm
Outer Diameter: in [mm]	3.30 [83.8]
Cup Height: in [mm]*	1.56 [39.7]
Stroke: in [mm]	0.58 [14.7]
Cup Weight: oz [g]	1.70 [48.2]
Internal Volume: cu in [cc]	1.80 [29.5]
Force @ 6 inHG: lb [n]	17.00 [75.6]
Force @ 18 inHG: lb [n]	42.00 [187.0]
Minimum Radius: in [mm]	2.80 [71.1]
Shear Load²: lb [n]	45.00 [200.0]

XP-BF100

Cup Diameter: in [mm]	100 mm
Outer Diameter: in [mm]	4.41 [112.1]
Cup Height: in [mm]*	1.95 [49.6]
Stroke: in [mm]	0.95 [24.1]
Cup Weight: oz [g]	2.40 [68.0]
Internal Volume: cu in [cc]	4.90 [80.3]
Force @ 6 inHG: lb [n]	28.00 [125.0]
Force @ 18 inHG: lb [n]	78.00 [347.0]
Minimum Radius: in [mm]	3.60 [91.5]
Shear Load²: lb [n]	53.00 [236.0]

Multi-Bellows Vacuum Cups

Multi-bellows vacuum cups are made with shallow-fold bellows plus a thin, shallow sealing lip that allows it to conform to flexible packaging and other thin workpieces. The shallow-fold bellows cannot withstand deep vacuum unless it is fully collapsed. Do not try to use the bellows movement to lift a workpiece or the cup can collapse radially inward. Our multibellows vacuum cups include both internal and external stiffening ring features to reduce the possibility of radial collapse where other brands do not. The stiffening ring also provides stability when the cup is fully collapsed.

Suitable Workpiece Surface:

- Flat
- Convex
- Compound
- Cylindrical
- Flexible
- Plastic Film

Multi-Bellows Vacuum Cups

		p Size		up Material	Cup	tting
XP-BL	30		A		-G14F	
	20	$\varnothing 20 \mathrm{~mm}$	A	Ameriflex	(Blank)	None
	30	$\varnothing 30 \mathrm{~mm}$	D	Duramax	See cup fittings for available threads.	
	40	$\varnothing 40 \mathrm{~mm}$	N	Nitrile / TPV		
	50	$\varnothing 50 \mathrm{~mm}$	S	Silicone		

XP-BL20

Cup Diameter: in [mm]	20 mm
Outer Diameter: in [mm]	0.79 [20.0]
Cup Height: in [mm]	0.86 [21.8]
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	$0.51[13.0]$
Cup Weight: oz [g]	0.07 [2.0]
Internal Volume: cu in [cc]	$0.24[3.9]$
Force @ 6 inHG: lb [n]	$0.70[3.1]$
Force @ 18 inHG: lb [n]	$1.40[6.2]$
Minimum Radius: in [mm]	$0.16[4.1]$

XP-BL40

Cup Diameter: in [mm]	40 mm
Outer Diameter: in [mm]	1.57 [39.9]
Cup Height: in [mm]	$1.61[40.8]$
Thru Hole: in [mm]	$0.29[7.4]$
Stroke: in [mm]	$0.98[24.9]$
Cup Weight: oz [g]	$0.43[12.2]$
Internal Volume: cu in [cc]	$1.6[26.2]$
Force @ 6 inHG: lb [n]	$2.50[11.1]$
Force @ 18 inHG: $\mathrm{lb}[\mathrm{n}]$	$4.90[21.8]$
Minimum Radius: in [mm]	$0.60[15.2]$

XP-BL30

Cup Diameter: in [mm]	30 mm
Outer Diameter: in [mm]	$1.18[30.0]$
Cup Height: in [mm]	$1.22[30.9]$
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	$0.79[20.1]$
Cup Weight: oz [g]	$0.21[6.0]$
Internal Volume: cu in [cc]	$0.80[13.1]$
Force @ 6 inHG: lb [n]	$1.40[6.2]$
Force @ 18 inHG: lb [n]	$3.60[16.0]$
Minimum Radius: in [mm]	$0.31[7.9]$

XP-BL50

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	1.97 [50.0]
Cup Height: in [mm]	2.01 [51.1]
Thru Hole: in [mm]	0.36 [9.1]
Stroke: in [mm]	$1.10[27.9]$
Cup Weight: oz [g]	$0.82[23.2]$
Internal Volume: cu in [cc]	$3.40[55.7]$
Force @ 6 inHG: lb [n]	$3.80[16.9]$
Force @ 18 inHG: lb [n]	$9.60[42.7]$
Minimum Radius: in [mm]	$0.60[15.2]$

Deep Vacuum Cups

Deep vacuum cups are used for highly curved or irregular surfaces and can even seal against corners, edges, and spherical workpiece. Deep vacuum cups are unsuitable for use on flat surfaces because the lip will be overstretched and the resultant scrubbing could leave marks on the workpiece.

Suitable Workpiece Surface:

- Convex
- Spherical
- Cylindrical

Deep Vacuum Cups

	Cup Size		Cup Material		Cup Fitting	
XP-D		15		S	-5	
	15	$\varnothing 15 \mathrm{~mm}$	N	Nitrile / TPV	(Blank)	None
	20	$\varnothing 20 \mathrm{~mm}$	S	Silicone	See cup fittings for available threads.	
	30	$\emptyset 30 \mathrm{~mm}$				
	40	$\varnothing 40 \mathrm{~mm}$				
	50	$\varnothing 50 \mathrm{~mm}$				

XP-D40

Cup Diameter: in [mm]	40 mm
Outer Diameter: in [mm]	1.66 [42.1]
Cup Height: in [mm]	$0.98[25.0]$
Thru Hole: in [mm]	$0.29[7.4]$
Stroke: in [mm]	$0.31[7.9]$
Cup Weight: oz [g]	$0.30[8.5]$
Internal Volume: cu in [cc]	$0.80[13.0]$
Force @ 6 inHG: lb [n]	5.40 [24.0]
Force @ 18 inHG: Ib [n]	$11.30[50.3]$
Minimum Radius: in [mm]	$0.65[16.5]$

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	$2.05[52.1]$
Cup Height: in [mm]	$1.20[30.5]$
Thru Hole: in [mm]	$0.36[9.1]$
Stroke: in [mm]	$0.39[9.9]$
Cup Weight: oz [g]	0.54 [15.3]
Internal Volume: cu in [cc]	$1.40[23.0]$
Force @ 6 inHG: lb [n]	$8.10[36.0]$
Force @ 18 inHG: lb [n]	$17.00[75.6]$
Minimum Radius: in [mm]	$0.98[24.9]$

Flat Vacuum Cups

Flat vacuum cups are like universal cups except they have cleats on the bottom which serve as traction surfaces and support the workpiece being lifted to prevent or limit deformation. The cleats limit deflection and maintain a larger exposed area to vacuum for a firm grip on the workpiece.

Flat vacuum cups have high stability and traction but a very short stroke. They should be used primarily for flat workpieces or sheet goods such as cardboard, corrugated board, and dry sheet metal. Flat vacuum cups will not work well with thin workpieces such as plastic sheet goods or flexible packaging.

Flat vacuum cups have very little angular compensation ability so they should always pick up perpendicular to a flat workpiece surface.

Suitable Workpiece Surface:

- Flat
- Shear Loads

Flat Vacuum Cups

	Cup Size			up Material	Cup	tting
XP-F	20			A	-14M	
	15	$\varnothing 15$ mm	A	Ameriflex ${ }^{1}$	(Blank)	None
	20	$\varnothing 20 \mathrm{~mm}$	D	Duramax ${ }^{1}$	See cup fittings for available threads.	
	25	$\varnothing 25 \mathrm{~mm}$	N	Nitrile / TPV		
	30	$\varnothing 30 \mathrm{~mm}$	S	Silicone		
			V	Viton		

${ }^{1}$ Not available on XP-F15.

XP-F15

Cup Diameter: in [mm]	15 mm
Outer Diameter: in [mm]	$0.65[16.5]$
Cup Height: in [mm]	$0.45[11.4]$
Thru Hole: in [mm]	$0.14[3.6]$
Stroke: in [mm]	$0.03[0.8]$
Cup Weight: oz [g]	$0.03[0.85]$
Internal Volume: cu in [cc]	$0.20[0.3]$
Force @ 6 inHG: lb [n]	$0.80[3.6]$
Force @ 18 inHG: lb [n]	$1.90[8.5]$
Minimum Radius: in [mm]	$0.51[13.0]$
Shear Load*: lb [n]	$0.90[4.0]$

XP-F25

Cup Diameter: in [mm]	25 mm
Outer Diameter: in [mm]	$1.06[26.9]$
Cup Height: in [mm]	$0.37[9.4]$
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	$0.06[1.5]$
Cup Weight: oz [g]	0.06 [1.7]
Internal Volume: cu in [cc]	0.07 [1.2]
Force @ 6 inHG: Ib [n]	$2.00[8.9]$
Force @ 18 inHG: lb [n]	$4.30[19.1]$
Minimum Radius: in [mm]	$0.98[24.9]$
Shear Load*: lb [n]	$2.10[9.3]$

XP-F20

Cup Diameter: in [mm]	20 mm
Outer Diameter: in [mm]	0.87 [22.1]
Cup Height: in [mm]	0.34 [8.7]
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	0.06 [1.5]
Cup Weight: oz [g]	0.05 [1.4]
Internal Volume: cu in [cc]	0.06 [1.0]
Force @ 6 inHG: lb [n]	$1.30[5.8]$
Force @ 18 inHG: Ib [n]	$3.30[14.7]$
Minimum Radius: in [mm]	$0.71[7.6]$
Shear Load*: Ib [n]	$1.70[7.6]$

All Flat Cups have cleats.

XP-F30

Cup Diameter: in [mm]	30 mm
Outer Diameter: in [mm]	$1.26[32.0]$
Cup Height: in [mm]	$0.41[10.4]$
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	0.09 [2.3]
Cup Weight: oz [g]	0.08 [2.3]
Internal Volume: cu in [cc]	$0.12[2.0]$
Force @ 6 inHG: lb [n]	$2.70[12.0]$
Force @ 18 inHG: lb [n]	$5.60[24.9]$
Minimum Radius: in [mm]	$0.98[24.9]$
Shear Load*: lb [n]	$2.80[12.5]$

Flat Vacuum Cups

	Cup Size		Cup Material ${ }^{1}$		Cup Fitting	
XP-F	50		D		-38M	
	40	$\varnothing 40 \mathrm{~mm}$	A	Ameriflex	(Blank)	None
	50	$\varnothing 50 \mathrm{~mm}$	D	Duramax	See cup fittings for available threads.	
	65	$\varnothing 65 \mathrm{~mm}$	N	Nitrile / TPV		
	90	$\varnothing 90 \mathrm{~mm}^{2}$	S	Silicone ${ }^{1}$		
			V	Viton ${ }^{1}$		

${ }^{1}$ Not available on XP-F65 or XP-F90.
${ }^{2}$ Uses 65 mm Cup Fittings.

XP-F65

Cup Diameter: in [mm]	65 mm
Outer Diameter: in [mm]	2.75 [69.9]
Cup Height: in [mm]	0.82 [20.9]
Thru Hole: in [mm]	0.50 [12.7]
Stroke: in [mm]	0.15 [2.5]
Cup Weight: oz [g]	0.51 [14.5]
Internal Volume: cu in [cc]	1.46 [24.0]
Force @ 6 inHG: lb [n]	9.00 [40.0]
Force @ 18 inHG: lb [n]	22.00 [98.0]
Minimum Radius: in [mm]	5.50 [140.0]
Shear Load*: lb [n]	11.00 [49.0]

All Flat Cups have cleats.

XP-F50

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	2.09 [53.1]
Cup Height: in [mm]	0.69 [17.5]
Thru Hole: in [mm]	0.36 [9.1]
Stroke: in [mm]	$0.12[3.0]$
Cup Weight: oz [g]	$0.40[11.3]$
Internal Volume: cu in [cc]	0.61 [10.0]
Force @ 6 inHG: lb [n]	$8.10[36.0]$
Force @ 18 inHG: lb [n]	$16.6[73.8]$
Minimum Radius: in [mm]	$2.17[55.1]$
Shear Load*: lb [n]	$8.30[36.9]$

XP-F90

Cup Diameter: in [mm]	90 mm
Outer Diameter: in [mm]	3.54 [89.9]
Cup Height: in [mm]	$1.06[26.9]$
Thru Hole: in [mm]	$0.50[12.7]$
Stroke: in [mm]	$0.20[5.2]$
Cup Weight: oz [g]	$1.10[31.0]$
Internal Volume: cu in [cc]	$2.93[48.0]$
Force @ 6 inHG: lb [n]	$24.00[106.8]$
Force @ 18 inHG: lb [n]	$60.00[266.9]$
Minimum Radius: in [mm]	$7.20[183.0]$
Shear Load*: lb [n]	$30.00[133.4]$

Flat Vacuum Cups

	Cup Size			Cup Material	Cup Fitting	
XP-F	110			S	-38F	
	75	$\varnothing 75 \mathrm{~mm}$	A	Ameriflex	(Blank)	None
	110	$\varnothing 110$ mm	N	Nitrile / TPV	See cup fittings for available threads.	
	150	$\varnothing 150 \mathrm{~mm}$	S	Silicone		
			V	Viton		

All Flat Cups have cleats.

XP-F75

Cup Diameter: in [mm]	75 mm
Outer Diameter: in [mm]	3.08 [78.2]
Cup Height*: in [mm]	0.99 [25.1]
Stroke: in [mm]	0.09 [2.3]
Cup Weight: oz [g]	1.00 [28.3]
Internal Volume: cu in [cc]	1.20 [19.7]
Force @ 6 inHG: lb [n]	18.00 [80.1]
Force @ 18 inHG: lb [n]	45.00 [20.0]
Minimum Radius: in [mm]	5.90 [150.0]
Shear Load*: lb [n]	23.00 [102.0]

XP-F110

Cup Diameter: in [mm]	110 mm
Outer Diameter: in [mm]	4.44 [112.8]
Cup Height*: in [mm]	$1.30[33.0]$
Stroke: in [mm]	$0.21[5.3]$
Cup Weight: oz [g]	$3.10[87.9]$
Internal Volume: cu in [cc]	$4.30[70.5]$
Force @ 6 inHG: lb [n]	$32.00[142.0]$
Force @ 18 inHG: lb [n]	94.00 [418.0]
Minimum Radius: in [mm]	$9.80[249.0]$
Shear Load*: lb [n]	$47.00[209.0]$

XP-F150

Cup Diameter: in [mm]	150 mm
Outer Diameter: in [mm]	$6.00[152.4]$
Cup Height*: in [mm]	$1.49[37.9]$
Stroke: in [mm]	0.33 [8.4]
Cup Weight: oz [g]	$7.30[207.0]$
Internal Volume: cu in [cc]	$9.80[161.0]$
Force @ 6 inHG: lb [n]	67.00 [298.0]
Force @ 18 inHG: lb [n]	$191.00[850.0]$
Minimum Radius: in [mm]	$19.70[500.0]$
Shear Load*: lb [n]	$95.00[422.0]$

Flat Vacuum Cups

XP-F240

Cup Diameter: in [mm]	240 mm
Outer Diameter: in [mm]	$9.70[246.4]$
Cup Height: in [mm]	$1.50[38.2]$
Stroke: in [mm]	$0.62[15.7]$
Cup Weight: oz [g]	$2.80[1.3]$
Internal Volume: cu in [cc]	$33.00[541.0]$
Force @ 18 inHG: lb [n]	450.00 [2002.0]
Minimum Radius: in [mm]	20.00 [508.0]
Shear Load*: lb [n]	$225.00[1001.0]$

Flat-Concave Vacuum Cups

Flat-concave vacuum cups have a dished bottom plus conforming cleats for use with flat or slightly domed or convex workpieces. The outer lip is reinforced for extra strength and extended life while the cleats provide superior traction to resist later shear loads.

Flat-concave vacuum cups have slight angular compensation ability so they should always be picked up perpendicular to a flat workpiece surface.

Suitable Workpiece Surface:

- Convex
- Spherical
- Shear Loads

Flat-Concave Vacuum Cups

All Flat-Concave Cups have cleats.

XP-FC50

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	1.97 [50.0]
Cup Height: in [mm]	0.75 [19.1]
Thru Hole: in [mm]	0.36 [9.1]
Stroke: in [mm]	0.25 [6.4]
Cup Weight: oz [g]	$0.30[7.9]$
Internal Volume: cu in [cc]	$0.70[11.5]$
Force @ 6 inHG: lb [n]	$7.80[34.7]$
Force @ 18 inHG: lb [n]	$19.00[84.5]$
Minimum Radius: in [mm]	$2.09[53.1]$
Shear Load*: lb [n]	$10.00[44.5]$

	Cup Material			Fitting
XP-FC75	S		38F	
	N	Nitrile / TPV	38F	3/8 NPSF Female
	S	Silicone	G38M	G 3/8 Male

XP-FC75-38F

Cup Diameter: in [mm]	75 mm
Outer Diameter: in [mm]	2.95 [75.0]
Cup Height: in [mm]*	1.46 [37.1]
Stroke: in [mm]	0.36 [9.1]
Cup Weight: oz [g]	1.70 [48.2]
Internal Volume: cu in [cc]	1.80 [29.5]
Force @ 6 inHG: lb [n]	17.00 [75.6]
Force @ 18 inHG: lb [n]	35.00 [154.0]
Minimum Radius: in [mm]	2.80 [71.1]
Shear Load*: lb [n]	45.00 [200.0]

XP-FC75-G38M

Cup Diameter: in [mm]	75 mm
Outer Diameter: in [mm]	$2.95[75.0]$
Cup Height: in [mm]	1.33 [33.7]
Stroke: in [mm]	0.36 [9.1]
Cup Weight: oz [g]	$1.70[48.2]$
Internal Volume: cu in [cc]	$1.80[29.5]$
Force @ 6 inHG: Ib [n]	17.00 [75.6]
Force @ 18 inHG: Ib [n]	$35.00[154.0]$
Minimum Radius: in [mm]	$2.80[71.1]$
Shear Load*: Ib [n]	$45.00[200.0]$

Flat-Concave Vacuum Cups

		p Material	Cup	ting
XP-FC100		N	-18F	
	N	Nitrile / TPV	See 75 mm cup fittings for available threads.	
	S	Silicone	See 75 mm cup fittings for available threads.	

XP-FC100

Cup Diameter: in [mm]	100 mm
Outer Diameter: in [mm]	$3.94[100.1]$
Cup Height: in $[\mathrm{mm}]^{*}$	$1.57[40.0]$
Stroke: in [mm]	$0.48[12.2]$
Cup Weight: oz [g]	$1.90[54.0]$
Internal Volume: cu in [cc]	$4.90[80.3]$
Force @ 6 inH: $\mathrm{lb}[\mathrm{n}]$	$31.00[138.0]$
Force @ 18 inHG: lb [n]	$64.00[285.0]$
Minimum Radius: in [mm]	$4.30[109.0]$
Shear Load*: lb [n]	$53.00[236.0]$

Oval Vacuum Cups

Oval vacuum cups come in two styles. Oval concave (OC) vacuum cups are like universal cups except the cup is elongated to provide a larger surface area and thus a stronger grip. Oval flat (OF) vacuum cups have bottom cleats to maintain a larger area exposed to vacuum. Because of this, the cleats reduce the stroke by almost half. They should only be used on flat or very slightly curved surfaces.

Oval vacuum cups can seal to cylindrical object but only along the cup long axis (be mindful of minimum radius). Whenever possible, use several round vacuum cups instead of oval vacuum cups as round vacuum cups are more forgiving of mounting misalignment and workpiece deflection.

OC Suitable Workpiece Surface:

- Flat
- Convex
- Cylindrical

OF Suitable Workpiece Surface:

- Flat
- Cylindrical
- Shear Loads

Oval Vacuum Cups

Cup Style				up Material		Threads
OC		-60X140-	S		-G	
OC	Concave		N	Nitrile / TPV	(Blank)	NPTF Threads
OF	Flat		S	Silicone	-G	G Threads

	OC	OF
Cup Dimensions: in [mm]	$60 \mathrm{~mm} \times 140 \mathrm{~mm}$	
Cup Height: in [mm]*	1.57 [40.0]	
Stroke: in [mm]	0.29 [7.4]	0.18 [4.6]
Cup Weight: oz [g]	4.10 [116.0]	4.20 [119.0]
Internal Volume: cu in [cc]	3.20 [52.4]	3.00 [49.2]
Force @ 6 inHG: lb [n]	29.00 [129.0]	
Force @ 18 inHG: Ib [n]	83.00 [369.0]	
Minimum Radius: in [mm]	1.50 [38.1]	3.00 [76.2]
Shear Load*: lb [n]	41.00 [182.0]	

Code	Function	NPTF	G
1	Vacuum Port	$3 / 8-18$ NPTF	G 3/8
2	Mounting Holes	$5 / 16-18$ UNC	M8x1.25

Universal Vacuum Cups

Universal vacuum cups are like flat vacuum cups except they have no bottom cleats. As a result, deflection is higher than flat vacuum cups and the cup area exposed to vacuum becomes smaller as vacuum level deepens and the cup lips flatten out. Under a heavy pull, a universal vacuum cup will "tent" up and the effective vacuum area will increase until it equals that of a flat vacuum cup, at which point, it will have similar load capacity.

Thin workpiece materials can be drawn in toward the cup center and essentially seal of vacuum from the universal vacuum cup lips so that the effective area becomes so small that the cup cannot pick up the workpiece safely.

Universal vacuum cups have very little angular compensation ability so they should always pick up perpendicular to a flat workpiece surface.

Suitable Workpiece Surface:

- Flat
- Slightly Concave
- Convex
- Compound
- Cylindrical
- Flexible

Universal Vacuum Cups

		p Size		up Material	Cup	tting
XP-U		8		S	-10	
	4	$\varnothing 4$ mm	N	Nitrile / TPV	(Blank)	None
	6	$\emptyset 6$ mm	S	Silicone	See cup fittings for available threads.	
	8	$\emptyset 8$ mm	V	Viton ${ }^{1}$		
	10	$\varnothing 10 \mathrm{~mm}$				
	15	$\varnothing 15$ mm				

${ }^{1}$ 'Only available for XP-U4 and XP-U10

Cup Diameter: in [mm]	10 mm
Outer Diameter: in [mm]	$0.43[11.0]$
Cup Height: in [mm]	$0.41[10.4]$
Thru Hole: in [mm]	$0.14[3.6]$
Stroke: in [mm]	$0.02[0.5]$
Cup Weight: oz [g]	$0.03[10.9]$
Internal Volume: cu in [cc]	$0.01[0.2]$
Force @ 6 inHG: lb [n]	$0.34[0.5]$
Force @ 18 inHG: lb [n]	$1.00[4.5]$
Minimum Radius: in [mm]	$0.31[7.9]$

XP-U15

Cup Diameter: in [mm]	15 mm
Outer Diameter: in [mm]	$0.65[16.5]$
Cup Height: in [mm]	0.45 [11.4]
Thru Hole: in [mm]	0.14 [3.6]
Stroke: in [mm]	$0.06[1.5]$
Cup Weight: oz [g]	$0.03[0.9]$
Internal Volume: cu in [cc]	$0.03[0.5]$
Force @ 6 inHG: lb [n]	$0.80[3.6]$
Force @ 18 inHG: Ib [n]	$1.90[8.5]$
Minimum Radius: in [mm]	$0.31[7.9]$

Universal Vacuum Cups

	Cup Size		Cup Material		Cup Fitting	
XP-U	25			N	-14M	
	20	$\varnothing 20 \mathrm{~mm}$	N	Nitrile / TPV	(Blank)	None
	25	$\varnothing 25$ mm	S	Silicone	See cup fittings for available threads.	
	30	$\varnothing 30 \mathrm{~mm}$				
	40	$\varnothing 40 \mathrm{~mm}$				
	50	$\varnothing 50 \mathrm{~mm}$				

XP-U20

Cup Diameter: in [mm]	20 mm
Outer Diameter: in [mm]	$0.87[22.1]$
Cup Height: in [mm]	$0.34[8.7]$
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	$0.10[2.5]$
Cup Weight: oz [g]	$0.04[1.1]$
Internal Volume: cu in [cc]	$0.06[1.0]$
Force @ 6 inHG: lb [n]	$1.30[5.8]$
Force @ 18 inHG: lb [n]	$2.70[12.0]$
Minimum Radius: in [mm]	$0.51[13.0]$

XP-U25

Cup Diameter: in [mm]	25 mm
Outer Diameter: in [mm]	1.06 [26.9]
Cup Height: in [mm]	0.38 [9.6]
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	$0.10[2.5]$
Cup Weight: oz [g]	0.06 [1.7]
Internal Volume: cu in [cc]	0.07 [1.1]
Force @ 6 inHG: lb [n]	$2.00[8.9]$
Force @ 18 inHG: lb [n]	$4.40[19.6]$
Minimum Radius: in [mm]	$0.65[16.5]$

XP-U30

Cup Diameter: in [mm]	30 mm
Outer Diameter: in [mm]	$1.26[32.0]$
Cup Height: in [mm]	0.41 [10.4]
Thru Hole: in [mm]	$0.20[5.1]$
Stroke: in [mm]	0.14 [3.6]
Cup Weight: oz [g]	0.07 [2.0]
Internal Volume: cu in [cc]	$0.12[2.0]$
Force @ 6 inHG: lb [n]	$2.70[12.0]$
Force @ 18 inHG: lb [n]	$5.60[24.9]$
Minimum Radius: in [mm]	$0.79[20.1]$

XP-U40

Cup Diameter: in [mm]	40 mm
Outer Diameter: in [mm]	1.66 [42.2]
Cup Height: in [mm]	0.55 [13.9]
Thru Hole: in [mm]	0.29 [7.4]
Stroke: in [mm]	$0.18[4.6]$
Cup Weight: oz [g]	0.17 [4.8]
Internal Volume: cu in [cc]	0.34 [5.6]
Force @ 6 inHG: lb [n]	$4.50[20.0]$
Force @ 18 inHG: lb [n]	$8.80[39.1]$
Minimum Radius: in [mm]	$1.18[30.0]$

XP-U50

Cup Diameter: in [mm]	50 mm
Outer Diameter: in [mm]	2.10 [53.3]
Cup Height: in [mm]	0.69 [17.6]
Thru Hole: in [mm]	0.36 [9.1]
Stroke: in [mm]	0.24 [6.1]
Cup Weight: oz [g]	0.35 [9.9]
Internal Volume: cu in [cc]	0.73 [12.0]
Force @ 6 inHG: Ib [n]	7.90 [35.1]
Force @ 18 inHG: lb [n]	$16.40[73.0]$
Minimum Radius: in [mm]	1.38 [35.1]

EC34S-30R: Egg Picking Vacuum Cup

Egg picking vacuum cups are double-bellows cups with a conical lower lip designed to gently grip eggs in a wide range of sizes. The lower bellows and lip collapse and nest inside the larger upper lip to provide stability under shallow vacuum levels that will not harm the egg shell. Common applications are sorting, incubation, rejection, or inoculation of eggs. Egg vacuum cups come in one material: brick-red, 30 Shore-A silicone rubber.

Vacuum Cup Fittings Assembly

Secure a block tee or other suitable pipe fitting in a vise to make a simple fixture as shown in the illustration.

Screw the cup fitting onto the fixture about 2 thread turns, by hand.

Dip your finger into a small container of water and wipe a few drops onto the fitting flange and into the top chamfer and bore of the vacuum cup. Use only water. Do not use any soap or oil. Water will quickly evaporate and leave no residue which could later affect performance.

Invert the vacuum cup and place it onto the flange as shown. Grasp the far side of the cup and pull it over the flange while apply downward pressure. After the cup snaps over the flange, rotate the cup on the fitting about $1 / 2$ turn to make sure it is properly seated.

Elastomer Properties

Ameriflex (A)

For general-purpose, normal ambient temperature applications as a replacement for competitors' PVC vinyl cups.

Duramax (D) ${ }^{4}$

Softer, non-staining, non-marking, general-purpose material for high visibility surfaces at normal ambient temperatures.

Nitrile / TPV (N)

For general-purpose, normal ambient temperature applications. Some cups are Nitrile while others are TPV. If this specification is important for your application, contact us and we can let you know which material each cup is made of.

Code	Elastomer	Wear Resistance	Working Temperature ${ }^{2}$	Weight Ratio	Color	Durometer Shore-A
A	Ameriflex	Excellent	-4° to $230^{\circ} \mathrm{F}$ -20° to $110^{\circ} \mathrm{C}$	0.85	Yellow	50
D	Duramax	Excellent	-4° to $230^{\circ} \mathrm{F}$ -20° to $110^{\circ} \mathrm{C}$	0.85	White	45
S	Sitrile / TPV	Excellent	-4° to $230^{\circ} \mathrm{F}$ -20° to $110^{\circ} \mathrm{C}$	1.0	Black	50
CS	Conductive Silicone	Good	-100° to $400^{\circ} \mathrm{F}$ -70° to $205^{\circ} \mathrm{C}$ -100° to $400^{\circ} \mathrm{F}$ -70° to $205^{\circ} \mathrm{C}$	1.06	Orange	50
V	Fluorocarbon (Viton $)$	Excellent	40° to $450^{\circ} \mathrm{F}$			
4° to $230^{\circ} \mathrm{C}$	1.78	Gray	60			

${ }^{1}$ Viton is a registered trademark of DuPont Dow.
${ }^{2}$ Continous service temperature. Intermittent service may possibly be higher. Determine via testing under actual conditions.
${ }^{3}$ Weight of Nitrile cup without fitting is tabulated. Use the ratio multiplier for other materials.
${ }^{4}$ The terms non-staining and non-marking refer only to the cup material. Airborne aerosols that attach to the cup surface or direct cup contact with dirty surfaces can result in residue transfer marks. Proper maintenance is important. Use only soap and water to wipe cups clean after installation and periodically afterward to remove airborne contaminants.
${ }^{5}$ EDCO products are made with synthetic, rubber-like materials. As such, EDCO products do not contain latex.
${ }^{6}$ All figures for shear load are 18 inHg using a 0.5 coefficient of friction. Adjust coefficient of friction to suit your conditions, then apply a generous factor of safety (3:1 or greater) to shear loads.

Vacuum Cup Fittings Section 3

FDCD LLSA

$\emptyset 40$ mm Cups

0 75-150 mm Cups

$\emptyset 50$ mm Cups

Ø 20-35 mm Cups

$\emptyset 65$ mm Cups

Accessories

\varnothing 4-8 mm Cups	3
\varnothing 10-15 mm Cups	4
\varnothing 20-35 mm Cups	5
$~ 40 \mathrm{~mm}$ Cups	8
$\varnothing 50 \mathrm{~mm}$ Cups	11
$\varnothing 65 \mathrm{~mm}$ Cups	14
$\varnothing 75-150 \mathrm{~mm}$ Cups	15
Fitting Accessories	15

Ø 4-8 mm Cup Fittings - Standard

8-4F

Assembly Suffix:	-4 F
Threads:	$\mathrm{M} 4 \times 0.7$
Thread Depth: in $[\mathrm{mm}]$	$0.23[5.8]$
Weight: oz [g]	$0.04[1.1]$
Thru Hole: in [mm]	$0.05[1.3]$
Hex Size: in $[\mathrm{mm}]$	$0.25[6.4]$

8-5F

Assembly Suffix:	-5 F
Threads:	$\mathrm{M} 5 \times 0.8$
Thread Depth: in [mm]	$0.25[6.4]$
Weight: oz [g]	$0.04[1.1]$
Thru Hole: in [mm]	$0.06[1.5]$
Hex Size: in [mm]	$0.31[8.0]$

$8-10 \mathrm{M}$

Assembly Suffix:	-10 l
Threads:	$10-32$ UNF (M5)
Weight: oz $[\mathrm{g}]$	$0.08[2.3]$
Thru Hole: in [mm]	$0.06[1.4]$
Hex Size: in $[\mathrm{mm}]$	$0.25[6.4]$

Ø 4-8 mm Cup Fittings - Side Vacuum Port w/ Male Post
JN-M6X1.0 (2) jam nuts included.

Ø 4-8 mm Cup Fittings - Side Vacuum Port w/ Female Port

For use with 8-10M and 10-10M cup fittings

M5x0.8

Technical Data

Fitting	Assembly Suffix	Weight oz [g]	Hex Size in $[\mathrm{mm}]$
5F-S5F-5F	-S5F-5F	$0.13[3.7]$	$0.38[9.5]$
5F-S5F-6F	-S5F-8F	$0.18[5.0]$	$0.44[11.1]$

Dimensions

Fitting	A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	Thread	Thread Depth in [mm]
5F-S5F-5F	$0.83[21.0]$	$0.68[17.3]$	$0.35[8.9]$	$\mathrm{M} 5 \times 0.8$	$0.22[5.6]$
5F-S5F-6F	$0.86[22.0]$	$0.63[16.0]$	$0.33[8.4]$	$\mathrm{M} 6 \times 1.0$	$0.33[8.4]$

Ø 10-15 mm Cup Fittings - Standard

10-4F

Assembly Suffix:	-4 F
Threads:	$\mathrm{M} 4 \times 0.7$
Thread Depth: in [mm]	$0.23[5.8]$
Weight: oz [g]	$0.05[1.4]$
Thru Hole: in [mm]	$0.10[2.5]$
Hex Size: in [mm]	$0.25[6.4]$

10-5F

Assembly Suffix:	-5 F
Threads:	$\mathrm{M} 5 \times 0.8$
Thread Depth: in [mm]	$0.20[5.1]$
Weight: oz [g]	$0.05[1.4]$
Thru Hole: in [mm]	$0.10[2.5]$
Hex Size: in [mm]	$0.25[6.4]$

10-18F

Assembly Suffix:	-10 M
Threads:	G $1 / 8$ NPSF
Thread Depth: in $[\mathrm{mm}]$	$0.28[7.1]$
Weight: oz [g]	$0.10[2.8]$
Thru Hole: in $[\mathrm{mm}]$	$0.10[2.5]$
Hex Size: in $[\mathrm{mm}]$	$0.5[13.0]$

10-10M

10-18M

Assembly Suffix:	-18 M
Male Threads:	$\mathrm{G} 1 / 8$
Female Threads:	M5x0.8
Thread Depth: in $[\mathrm{mm}]$	$0.21[5.3]$
Weight: oz [g]	$0.08[2.3]$
Thru Hole: in [mm]	$0.10[2.5]$
Hex Size: in $[\mathrm{mm}]$	$0.50[13.0]$

Ø 10-15 mm Cup Fittings - Side Vacuum Port w/ Male Post

JN-M6X1.0 (2) jam nuts included.

Ø 20-35 mm Cup Fittings - Female

Technical Data

Fitting	Assembly Suffix	Weight oz [g]
$32-5 F$	$-5 F$	$0.09[2.6]$
$32-6 F$	$-6 F$	$0.23[6.5]$
$32-8 F$	$-8 F$	$0.20[5.7]$
$32-18 F$	$-18 F$	$0.12[3.4]$
$32-G 14 F$	$-G 14 F$	$0.26[7.3]$

Dimensions

Fitting	Hex Height in $[\mathrm{mm}]$	Hex Size in $[\mathrm{mm}]$	Thru Hole in $[\mathrm{mm}]$	Thread	Thread Depth in [mm]
$32-5 F$	$0.25[6.4]$	$0.50[12.7]$	$0.17[4.2]$	$\mathrm{M} 5 \times 0.8$	$0.20[5.1]$
$32-6 F$	$0.55[14.0]$	$0.56[14.5]$	$0.14[3.6]$	$\mathrm{M} 6 \times 1.0$	$0.25[6.4]$
$32-8 F$	$0.55[14.0]$	$0.56[14.5]$	$0.14[3.6]$	$\mathrm{M} 8 \times 1.25$	$0.32[8.1]$
32-18F	$0.40[10.0]$	$0.56[14.5]$	$0.17[4.2]$	$\mathrm{G} 1 / 8 \mathrm{NPSF}$	$0.25[8.4]$
32-G14F	$0.65[16.4]$	$0.69[17.5]$	$0.17[4.2]$	$\mathrm{G} 1 / 4$	$0.45[11.4]$

Ø 20-35 mm Cup Fittings - Male

Technical Data

Fitting	Assembly Suffix	Weight oz [g]
$32-5 M$	$-5 M$	$0.09[2.6]$
$32-6 M$	$-6 M$	$0.11[3.2]$
32-8M	-8 M	$0.12[3.4]$
32-18M ${ }^{1}$	-18 M	$0.08[2.3]$
32-14M	-14 M	$0.18[5.1]$
32-G14M	$-G 14 \mathrm{M}$	$0.16[4.5]$
32-G38M	-G38M	$0.34[9.5]$

Dimensions

Fitting	Hex Height in [mm]	Hex Size in [mm]	Thru Hole in $[\mathrm{mm}]$	Thread	Thread Length in [mm]
$32-5 \mathrm{M}$	$0.20[5.1]$	$0.50[12.7]$	$0.08[2.0]$	$\mathrm{M} 5 \times 0.8$	$0.19[4.8]$
$32-6 \mathrm{M}$	$0.20[5.1]$	$0.56[14.2]$	$0.10[2.5]$	$\mathrm{M} 6 \times 1.0$	$0.23[5.9]$
$32-8 \mathrm{M}$	$0.20[5.1]$	$0.56[14.2]$	$0.14[3.6]$	$\mathrm{M} 8 \times 1.25$	$0.32[8.1]$
$32-18 \mathrm{M}^{1}$	$0.11[2.8]$	$0.56[14.2]$	$0.16[4.1]$	$\mathrm{G} 1 / 8 \mathrm{NPSF}$	$0.24[6.1]$
$32-14 \mathrm{M}$	$0.20[5.1]$	$0.69[17.5]$	$0.17[4.2]$	$1 / 4 \mathrm{NPTF}$	$0.35[9.0]$
$32-\mathrm{G14M}$	$0.20[5.1]$	$0.69[17.5]$	$0.17[4.2]$	$\mathrm{G} 1 / 4$	$0.35[9.0]$
$32-\mathrm{G38M}$	$0.25[6.4]$	$0.88[22.2]$	$0.17[4.2]$	$\mathrm{G} 3 / 8$	$0.26[6.6]$

132-18M also has M5x0.8 Female threads 0.22 [5.7] deep.

Ø 20-35 mm Cup Fittings - Male Stud

Technical Data

Fitting	Assembly Suffix	Weight oz $[\mathrm{g}]$
$32-6 \mathrm{MS}$	-6 MS	$0.02[0.7]$
$32-10 \mathrm{MS}$	-10 MS	$0.02[0.7]$

Dimensions

Fitting	Slot Width in $[\mathrm{mm}]$	Thru Hole in $[\mathrm{mm}]$	Thread	Thread Length in $[\mathrm{mm}]$	Total Height in $[\mathrm{mm}]$
$32-6 \mathrm{MS}$	$0.06[1.5]$	$0.09[2.3]$	M6x1.0	$0.16[4.1]$	$0.41[10.4]$
$32-10 \mathrm{MS}$	$0.06[1.5]$	$0.09[2.3]$	$10-32$ UNF (M5)	$0.16[4.1]$	$0.41[10.4]$

Ø 20-35 mm Cup Fittings - Cross Fittings

32-5X18F

Assembly Suffix:	$-5 \times 18 \mathrm{~F}$
Threads:	G $1 / 8$ NPSF (5)
Mount Threads:	M4×0.7 (2)
Weight: oz [g]	$1.00[28.3]$
Thru Hole: in [mm]	$0.17[4.2]$

Ø 20-35 mm Cup Fittings - M5 Female Side Vacuum Port w/ Female Mount

Technical Data

Fitting	Assembly Suffix	Weight oz $[\mathrm{g}]$	Hex Size in $[\mathrm{mm}]$
32-S5F-5F	-S5F-5F	$0.34[9.6]$	$0.56[14.3]$
32-S5F-6F	-S5F-6F	$0.43[12.8]$	$0.56[14.3]$
32-S5F-8F	-S5F-8F	$0.41[11.0]$	$0.56[14.3]$

Dimensions

Fitting	A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	Mount Thread	Thread Depth in $[\mathrm{mm}]$
$32-$ S5F-5F	$0.89[22.1]$	$0.69[17.5]$	$0.35[8.9]$	$\mathrm{M} 5 \times 0.8$	$0.30[7.6]$
$32-$ S5F-6F	$1.18[30.0]$	$0.94[23.9]$	$0.39[9.9]$	$\mathrm{M} 6 \times 1.0$	$0.25[6.3]$
$32-$ S5F-8F	$1.18[30.0]$	$0.87[22.0]$	$0.39[9.9]$	$\mathrm{M} 8 \times 1.25$	$0.32[8.1]$

Ø 20-35 mm Cup Fittings - Tool Mount

JN-M16X1 (2) jam nuts included.

32-18FX40

Assembly Suffix:	-18 FX 40
Female Threads:	$\mathrm{G} 1 / 8 \mathrm{NPSF}$
Thread Depth: in [mm]	$0.38[9.7]$
Post Threads:	$\mathrm{M} 16 \times 1.0$
Hex Size: in [mm]	$0.69[17.5]$
Hex Height: in [mm]	$0.18[4.6]$
Weight: oz [g]	$0.78[22.1]$
Thru Hole: in [mm]	$0.16[4.1]$

Ø 20-35 mm Cup Fittings - Die Cutting

Contains push-in bore (2) for $\varnothing 6 \mathrm{~mm}$ tubing.

Ø 40 mm Cup Fittings - Female

Technical Data

Fitting	Assembly Suffix	Weight oz [g]
$40-6 F$	$-6 F$	$0.38[10.8]$
$40-8 F$	$-8 F$	$0.34[9.6]$
$40-18 F$	$-18 F$	$0.20[5.7]$
$40-38 F$	$-38 F$	$0.46[13.2]$
$40-G 14 F$	$-G 14 F$	$0.26[7.3]$

Dimensions

Fitting	Hex Height in $[\mathrm{mm}]$	Hex Size in $[\mathrm{mm}]$	Thru Hole in $[\mathrm{mm}]$	Thread	Thread Depth in [mm]
$40-6 F$	$0.55[14.0]$	$0.69[17.5]$	$0.14[3.6]$	$\mathrm{M} 6 \times 1.0$	$0.25[6.4]$
$40-8 F$	$0.55[14.0]$	$0.69[17.5]$	$0.14[3.6]$	$\mathrm{M} 8 \times 1.25$	$0.32[8.1]$
$40-18 \mathrm{~F}$	$0.35[8.8]$	$0.69[17.5]$	$0.22[5.6]$	$\mathrm{G} 1 / 8 \mathrm{NPSF}$	$0.25[6.4]$
$40-38 F$	$0.70[17.8]$	$0.88[22.2]$	$0.22[5.6]$	$3 / 8 \mathrm{NPTF}$	$0.55[14.0]$
$40-\mathrm{G14F}$	$0.63[15.9]$	$0.75[19.0]$	$0.22[5.6]$	$\mathrm{G} 1 / 4$	$0.45[11.4]$

Ø 40 mm Cup Fittings - Male

Technical Data

Fitting	Assembly Suffix	Weight oz [g]
$40-6 M$	$-6 M$	$0.38[10.8]$
$40-8 M$	$-8 M$	$0.19[5.4]$
$40-18 M$	$-18 M$	$0.16[4.5]$
$40-14 M$	$-14 M$	$0.19[5.4]$
$40-38 M$	$-38 M$	$0.27[7.7]$
$40-G 14 M$	$-G 14 M$	$0.21[5.9]$
$40-G 38 M$	$-G 38 M$	$0.27[7.7]$

Dimensions

Fitting	Hex Height in [mm]	Hex Size in [mm]	Thru Hole in [mm]	Thread	Thread Length in [mm]
$40-6 \mathrm{M}$	$0.20[5.1]$	$0.69[17.5]$	$0.14[3.6]$	$\mathrm{M} 6 \times 1.0$	$0.32[8.1]$
$40-8 \mathrm{M}$	$0.20[5.1]$	$0.69[17.5]$	$0.14[3.6]$	$\mathrm{M} 8 \times 1.25$	$0.32[8.1]$
$40-18 \mathrm{M}$	$0.19[4.9]$	$0.69[17.5]$	$0.22[5.6]$	$\mathrm{G} 1 / 8 \mathrm{NPSF}$	$0.23[5.9]$
$40-14 \mathrm{M}$	$0.20[5.1]$	$0.69[17.5]$	$0.22[5.6]$	$1 / 4 \mathrm{NPT}$	$0.36[9.0]$
$40-38 \mathrm{M}$	$0.20[5.1]$	$0.75[19.0]$	$0.22[5.6]$	$3 / 8 \mathrm{NPT}$	$0.36[9.0]$
$40-\mathrm{G14M}$	$0.20[5.1]$	$0.69[17.5]$	$0.22[5.6]$	$\mathrm{G} 1 / 4$	$0.36[9.0]$
$40-\mathrm{G38M}$	$0.20[5.1]$	$0.75[19.0]$	$0.22[5.6]$	$\mathrm{G} \mathrm{3/8}$	$0.36[9.0]$

Ø 40 mm Cup Fittings - Male Stud

40-6MS

Assembly Suffix:	-6 MS
Thread:	$\mathrm{M} 6 \times 1.0$
Weight: oz [g]	$0.07[1.9]$
Thru Hole: in $[\mathrm{mm}]$	$0.09[2.4]$

Ø 40 mm Cup Fittings - Cross Fittings

40-5X18F

Assembly Suffix:	$-5 \times 18 \mathrm{~F}$
Threads:	G $1 / 8 \mathrm{NPSF}(5)$
Mount Threads:	$\mathrm{M} 4 \times 0.7(2)$
Weight: oz [g]	$1.00[28.3]$
Thru Hole: in $[\mathrm{mm}]$	$0.22[5.6]$

40-5X5F

Ø 40 mm Cup Fittings - M5 Female Side Vacuum Port w/ Female Mount

Technical Data

Fitting	Assembly Suffix	Weight oz [g]	Hex Size in $[\mathrm{mm}]$
$40-$ S5F-6F	-S5F-6F	$0.69[19.6]$	$0.69[17.5]$
$40-$ S5F-8F	-S5F-8F	$0.63[17.9]$	$0.69[17.5]$

Dimensions

Fitting	A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	Mount Thread	Thread Depth in [mm]
$40-$ S5F-6F	$1.18[30.0]$	$0.94[23.9]$	$0.39[9.9]$	$M 6 \times 1.0$	$0.25[6.3]$
$40-$ S5F-8F	$1.18[30.0]$	$0.87[22.0]$	$0.39[9.9]$	$\mathrm{M} 8 \times 1.25$	$0.32[8.1]$

Ø 40 mm Cup Fittings - Tool Mount
JN-M16X1 (2) jam nuts included.

$\rightarrow\left|\begin{array}{l}\phi 0.50 \\ {[12.7]}\end{array}\right|-$
40-18FX40

Assembly Suffix:	$-18 \mathrm{FX40}$
Female Threads:	G $1 / 8$ NPSF
Thread Depth: in $[\mathrm{mm}]$	$0.38[9.7]$
Post Threads:	$\mathrm{M} 16 \times 1.0$
Hex Size: in $[\mathrm{mm}]$	$0.69[17.5]$
Hex Height: in $[\mathrm{mm}]$	$0.18[4.6]$
Weight: oz $[\mathrm{g}]$	$0.80[22.7]$
Thru Hole: in $[\mathrm{mm}]$	$0.22[5.5]$

Ø 40 mm Cup Fittings - Die Cutting

Contains push-in bore (2) for $\varnothing 6 \mathrm{~mm}$ tubing.

40-DC125X31

Ø 50 mm Cup Fittings - Female

Technical Data

Fitting	Assembly Suffix	Weight oz $[\mathrm{g}]$
$50-6 F$	$-6 F$	$0.42[11.9]$
$50-8 F$	-8 F	$0.38[10.8]$
$50-18 \mathrm{~F}$	-18 F	$0.23[6.5]$
$50-14 \mathrm{~F}$	-14 F	$0.36[10.2]$
$50-38 \mathrm{~F}$	-38 F	$0.51[14.5]$
$50-\mathrm{G14F}$	$-\mathrm{G14F}$	$0.37[10.5]$

Dimensions

Fitting	Hex Height in [mm]	Hex Size in [mm]	Thru Hole in $[\mathrm{mm}]$	Thread	Thread Depth in [mm]
$50-6 F$	$0.55[14.0]$	$0.69[17.5]$	$0.14[3.6]$	$\mathrm{M} 6 \times 1.0$	$0.25[6.4]$
$50-8 \mathrm{~F}$	$0.55[14.0]$	$0.69[17.5]$	$0.14[3.6]$	$\mathrm{M} 8 \times 1.25$	$0.32[8.1]$
$50-18 \mathrm{~F}$	$0.35[8.8]$	$0.69[17.5]$	$0.22[5.6]$	$\mathrm{G} 1 / 8 \mathrm{NPSF}$	$0.25[6.4]$
$50-14 \mathrm{~F}$	$0.62[15.6]$	$0.75[19.0]$	$0.22[5.6]$	$1 / 4 \mathrm{NPTF}$	$0.40[10.0]$
$50-38 \mathrm{~F}$	$0.70[17.8]$	$0.88[22.2]$	$0.22[5.6]$	$3 / 8 \mathrm{NPSF}$	$0.45[11.4]$
$50-\mathrm{G14F}$	$0.63[15.9]$	$0.75[19.0]$	$0.22[5.6]$	$\mathrm{G} 1 / 4$	$0.45[11.4]$

Ø 50 mm Cup Fittings - Male

Technical Data

Fitting	Assembly Suffix	Weight oz [g]
50-6M	-6M	0.23 [6.5]
50-8M	-8M	0.23 [6.5]
50-18M	-18M	0.20 [5.7]
50-14M	-14M	0.23 [6.5]
50-38M	-38M	0.31 [8.8]
50-G14M	-G14M	0.25 [7.1]
50-G38M	-G38M	0.31 [8.8]
50-N18M	-N18M	0.20 [5.7]

Dimensions

Fitting	Hex Height in $[\mathrm{mm}]$	Hex Size in $[\mathrm{mm}]$	Thru Hole in $[\mathrm{mm}]$	Thread	Thread Length in [mm]
$50-6 \mathrm{M}$	$0.20[5.1]$	$0.69[17.5]$	$0.14[3.6]$	$\mathrm{M} 6 \times 1.0$	$0.32[8.1]$
$50-8 \mathrm{M}$	$0.20[5.1]$	$0.69[17.5]$	$0.14[3.6]$	$\mathrm{M} 8 \times 1.25$	$0.32[8.1]$
$50-18 \mathrm{M}$	$0.20[5.1]$	$0.69[17.5]$	$0.22[5.6]$	$\mathrm{G} 1 / 8 \mathrm{NPSF}$	$0.23[5.9]$
$50-14 \mathrm{M}$	$0.20[5.1]$	$0.69[17.5]$	$0.22[5.6]$	$1 / 4 \mathrm{NPT}$	$0.35[9.0]$
$50-38 \mathrm{M}$	$0.20[5.1]$	$0.75[19.0]$	$0.22[5.6]$	$3 / 8 \mathrm{NPSF}$	$0.35[9.0]$
$50-\mathrm{G14M}$	$0.20[5.1]$	$0.69[17.5]$	$0.22[5.6]$	$\mathrm{G} 1 / 4$	$0.35[9.0]$
$50-\mathrm{G38M}$	$0.20[5.1]$	$0.75[19.0]$	$0.22[5.6]$	$\mathrm{G} 3 / 8$	$0.35[9.0]$
$50-\mathrm{N} 18 \mathrm{M}$	$0.20[5.1]$	$0.69[17.5]$	$0.22[5.6]$	$1 / 8 \mathrm{NPT}$	$0.39[9.9]$

Ø 50 mm Cup Fittings - Male Stud

50-6MS

Assembly Suffix:	-6 MS
Thread:	$\mathrm{M} 6 \times 1.0$
Weight: oz [g]	$0.12[3.4]$
Thru Hole: in $[\mathrm{mm}]$	$0.02[2.5]$

Ø 50 mm Cup Fittings - Cross Fittings

50-5X18F

Assembly Suffix:	$-5 \times 18 \mathrm{~F}$
Threads:	$\mathrm{G} 1 / 8 \mathrm{NPSF}(5)$
Mount Threads:	$\mathrm{M} 4 \times 0.7(2)$
Weight: oz [g]	$1.00[29.7]$
Thru Hole: in [mm]	$0.22[5.6]$

50-5X5F	
Assembly Suffix:	$-5 \times 5 \mathrm{~F}$
Threads:	M5×0.8 (5)
Mount Threads:	M3×0.5 (2)
Weight: oz [g]	$0.36[10.1]$
Thru Hole: in [mm]	$0.16[4.1]$

Ø 50 mm Cup Fittings - M5 Female Side Vacuum w/ Female Port

Technical Data

Fitting	Assembly Suffix	Weight oz $[\mathrm{g}]$	Hex Size in $[\mathrm{mm}]$
50-S5F-6F	-S5F-6F	$0.74[21.0]$	$0.69[17.5]$
50-S5F-8F	-S5F-8F	$0.68[19.3]$	$0.69[17.5]$

Dimensions

Fitting	A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	Mount Thread	Thread Depth in $[\mathrm{mm}]$
$50-$ S5F-6F	$1.18[30.0]$	$0.94[23.9]$	$0.39[9.9]$	$M 6 \times 1.0$	$0.25[6.3]$
$50-$ S5F-8F	$1.18[30.0]$	$0.87[22.0]$	$0.39[9.9]$	$\mathrm{M} 8 \times 1.25$	$0.32[8.1]$

Ø 50 mm Cup Fittings - Tool Mount

JN-M16X1 (2) jam nuts included.

Assembly Suffix:	-18 FX 40
Female Threads:	$\mathrm{G} 1 / 8 \mathrm{NPSF}$
Thread Depth: in [mm]	$0.38[9.7]$
Post Threads:	$\mathrm{M} 16 \times 1.0$
Hex Size: in [mm]	$0.69[17.5]$
Hex Height: in [mm]	$0.18[4.6]$
Weight: oz [g]	$0.83[23.5]$
Thru Hole: in [mm]	$0.21[5.3]$

Ø 65 mm Cup Fittings - Female

Technical Data

Fitting	Assembly Suffix	Weight oz [g]
$65-18 \mathrm{~F}$	-18 F	$0.43[12.2]$
65-38F	-38 F	$0.66[18.6]$
65-G14F	$-\mathrm{G14F}$	$0.45[12.7]$
Dimensions		

Fitting	Hex Height in $[\mathrm{mm}]$	Offset Height in $[\mathrm{mm}]$	Thru Hole in $[\mathrm{mm}]$	Thread	Thread Depth in [mm]
65-18F	$0.25[6.4]$	$0.15[3.8]$	$0.34[8.6]$	G 1/8 NPSF	$0.38[7.1]$
65-38F	$0.82[20.8]$	N/A	$0.34[8.6]$	$3 / 8$ NPSF	$0.55[14.0]$
$65-G 14 F$	$0.25[6.4]$	$0.34[8.5]$	$0.34[8.6]$	G $1 / 4$	$0.45[11.4]$

Hex Size $=0.88$ [22.4] for all 65 mm Cup Fittings

Ø 65 mm Cup Fittings - Male

Technical Data

Fitting	Assembly Suffix	Weight oz [g]
$65-18 \mathrm{M}$	-18 M	$0.43[12.3]$
$65-14 \mathrm{M}$	-14 M	$0.45[12.7]$
$65-38 \mathrm{M}$	-38 M	$0.45[12.7]$
$65-\mathrm{G14M}$	- G14M	$0.45[12.7]$
$65-G 38 \mathrm{M}$	- G38M	$0.45[12.7]$

Dimensions

Fitting	Hex Height in $[\mathrm{mm}]$	Thru Hole in $[\mathrm{mm}]$	Thread	Thread Length in [mm]
$65-18 \mathrm{M}$	$0.25[6.4]$	$0.22[5.6]$	G 1/8 NPSF	$0.24[6.1]$
$65-14 \mathrm{M}$	$0.29[7.4]$	$0.28[7.1]$	$1 / 4 \mathrm{NPT}$	$0.27[6.9]$
$65-38 \mathrm{M}$	$0.25[6.4]$	$0.34[8.6]$	$3 / 8 \mathrm{NPSF}$	$0.35[8.9]$
$65-\mathrm{G14M}$	$0.29[7.4]$	$0.28[7.1]$	G 1/4	$0.27[6.9]$
$65-\mathrm{G38M}$	$0.25[6.4]$	$0.34[8.6]$	G 3/8	$0.35[8.9]$

65-38M and 65-G38M also have G 1/8 NPSF Female Threads Hex Size $=0.88$ [22.4] on all 65 mm Cup Fittings

Ø 65 mm Cup Fittings - Male Stud

65-18MS

Assembly Suffix:	-18 MS
Thread:	G $1 / 8 \mathrm{NPT}$
Weight: oz $[\mathrm{g}]$	$0.21[5.9]$
Thru Hole: in $[\mathrm{mm}]$	$0.20[5.0]$

Ø 75-150 mm Cup Fittings

Fitting	Assembly Suffix	Weight oz [g]	$\begin{gathered} \mathrm{A} \\ \text { in }[\mathrm{mm}] \end{gathered}$	$\begin{gathered} B \\ \text { in }[\mathrm{mm}] \end{gathered}$	$\begin{gathered} \text { C } \\ \text { in }[\mathrm{mm}] \end{gathered}$	Thread
75-18F	-18F	2.80 [79.4]	2.36 [60.0]	N/A	0.68 [17.3]	G 1/8 NPSF
75-14F	-14F	2.70 [76.5]	2.36 [60.0]	N/A	0.68 [17.3]	1/4 NPSF
75-G14F	-G14F	2.70 [76.5]	2.36 [60.0]	N/A	0.68 [17.3]	G 1/4
75-38F	-38F	2.70 [76.5]	2.36 [60.0]	N/A	0.68 [17.3]	3/8 NPSF
75-G38F	-G38F	2.70 [76.5]	2.36 [60.0]	N/A	0.68 [17.3]	G 3/8
75-12F	-12F	2.60 [73.7]	2.36 [60.0]	N/A	0.68 [17.3]	G 1/2 NPSF
110-38F	-38F	5.10 [145.0]	3.35 [85.1]	1.10 [27.9]	0.59 [15.0]	3/8 NPSF
110-12F	-12F	5.10 [145.0]	3.35 [85.1]	1.10 [27.9]	0.59 [15.0]	G 1/2 NPSF
150-38F	-38F	8.50 [241.0]	4.72 [120.0]	1.38 [25.0]	0.56 [14.2]	3/8 NPSF
150-12F	-12F	8.50 [241.0]	4.72 [120.0]	1.38 [25.0]	0.56 [14.2]	G 1/2 NPSF

All 75-150 fittings include M4X10-965A Stainless Steel Screws and SS Filter Screen.
Sizes 110 and 150 fittings also include an FS21 Filter Screen and P18 Plug for Auxiliary Port.

Metric Bushings

For use with 75-12F, 110-12F, and 150-12F fittings.

Bushing	Female Thread	Weight oz [g]
G12M-M8X1.25F	M8x1.25	$0.49[13.8]$
G12M-M10X1.25F	M10×1.25	$0.45[12.7]$
G12M-M10X1.5F	M10×1.5	$0.45[12.7]$
G12M-M12X1.75F	M12x1.75	$0.40[11.3]$
G12M-M16X1.5F	M16x1.5	$0.24[6.8]$

Cup Fitting Adapters

Adapter	Thread 1	Thread 2	Weight oz [g]
$38 M \times 18 M$	G 3/8 NPT	G $1 / 8$ NPT	$0.26[7.3]$
$38 M \times 38 M$	G 3/8 NPT	G 3/8 NPT	$0.31[8.9]$
$38 M \times 12 M$	G 3/8 NPT	G $1 / 2$ NPT	$0.59[16.8]$
$12 M \times 12 M$	G $1 / 2$ NPT	G $1 / 2$ NPT	$0.77[21.7]$

Male Stud Adapters
For use with 32-6MS, 40-6MS, and 50-6MS fittings.

Thread 1:	G $1 / 4$
Thread 2:	M6x1.0
Weight: oz [g]	$0.28[7.9]$

6F-14M

Thread 1:	$1 / 4$ NPTF
Thread 2:	M6x1.0
Weight: oz [g]	$0.68[19.3]$

Tool Mount Adapters

For use with -18M fittings. JN-M16X1 (2) jam nuts included.

18F-16X40

Port Threads:	G $1 / 8$ NPSF
Post Threads:	M16x1.0
Weight: oz [g]	$1.10[31.2]$

T-Slot Adapters

Adapter	A in $[\mathrm{mm}]$	Thread	Weight oz $[\mathrm{g}]$
TSA-18M	$0.61[15.5]$	G 1/8 NPS	$0.75[21.3]$
TSA-38M	$0.79[20.0]$	$3 / 8$ NPSF	$0.68[19.3]$
TSA-12M	$0.79[20.0]$	G 1/2 NPS	$0.59[16.7]$

Side Vacuum Port Adapter

For use with 75-12F, 110-12F, and 150-12F fittings. JN-M16X1 (1) jam nut included.

SS12: Sheet Separator

Used to warp the edges of sheet goods to promote separation from the next sheet in a stack. As vacuum is applied to the vacuum cup, the cup pulls the sheet against a crowned brass center post and warps it slightly to produce a small air passage under the sheet edge which facilitates sheet separation. One separator per corner is recommended.
Depending on the size and thickness of sheet material, more units may be required. The degree of the warp can be adjusted by changing the projection distance of the center post from the cup cleats or the amount of vacuum applied to the vacuum cup. A 150 mm size cup produces a very large force and should only be used with thicker materials to prevent marking the product.

Sheet Separators can be ordered on their own to add to your cup by using the SS-12 part number. To order a sheet separator with a cup already attached, use the chart below. Sheet Separators are compatible with XP-F110 and XP-F150 cups using 12F fittings.

Cup Fitting Adapters

Weight: $0.03 \mathrm{Ibs}[15.4 \mathrm{~g}]$

38MX38M

Weight: $0.02 \mathrm{lbs}[9.1 \mathrm{~g}]$

38MX18M

Weight: $0.02 \mathrm{lbs}[7.7 \mathrm{~g}]$

Vacuum Cup Accessories Section 4

FDPD LLSA

Dual-Flow Valves

Mechanical Valves

Atmospheric Quick Release

Tri-Flow Valves

Cone Valves

Swivel Joints

Flow-Sensor-Valves

Tee Adapters

Dual-Flow Valves	3
Tri-Flow Valves	4
Flow Sensor Valves	5
Mechanical Valves	9
Cone Valves	10
Check Valves	11
Atmospheric Quick Release	15
Swivel Joints	16
Tee Adapters	17
Level Compensators	18

Dual-Flow Valves

Dual-Flow Valves limit vacuum leakage in a system where some of the vacuum cups may not be in sealing contact with the work piece. Since vacuum flow is limited by a small orifice, Dual-Flow Valves are only recommended for non-porous parts or for slightly porous, light-weight parts.

There are two main ways to apply Dual-Flow Valves. The first is to bring Dual-Flow Valve equipped vacuum cups into contact with the work piece and then turn on the vacuum source. Non-sealing cups will leak and cause the associated DualFlow Valves to close to orifice flow only.
The second way is to turn on the vacuum source to close all Dual-Flow Valves before the vacuum cups contact the work piece and then allow the Dual-Flow Valve orifice flow to establish vacuum within the cups once contact is made.

In either case, part release is accomplished by removing the vacuum source and allow atmospheric air to open the DualFlow Valves. For a faster cycle time, use a blow-off pulse of compressed air to break the vacuum and release the part more quickly.

Ø 20-35 mm Cups

Dual-Flow Fitting	Assembly Suffix	Weight oz [g]	Flow \& $18 \mathrm{inHg}[81 \mathrm{kPa}]$ SCFM [NI/m]	Connection Threads
32-18FDF	-18FDF	$0.13[3.7]$	$0.20[5.7]$	G 1/8 NPS (F)
32-18MDF	-18MDF	$0.13[3.7]$	$0.20[5.7]$	G 1/8 NPS (M)
32-14MDF	-14MDF	$0.19[5.4]$	$0.20[5.7]$	$1 / 4$ NPT (M)
32-G14FDF	-G14FDF	$0.27[7.7]$	$0.20[5.7]$	G 1/4 (F)
32-G14MDF	-G14MDF	$0.17[4.8]$	$0.20[5.7]$	G 1/4 (M)
32-5X5FDF	-5X5FDF	$0.9[5.4]$	$0.20[5.7]$	M5x0.8 (F)
32-5X18FDF	-5X18FDF	$1.01[28.6]$	$0.20[5.7]$	G 1/8 NPS (F)

040 mm Cups

Dual-Flow Fitting	Assembly Suffix	Weight oz [g]	Flow \& 18 inHg [81 kPa] SCFM [NI/m]	Connection Threads
40-18FDF	-18FDF	0.22 [6.2]	0.50 [14.2]	G 1/8 NPS (F)
40-18MDF	-18MDF	0.22 [6.2]	0.50 [14.2]	G 1/8 NPS (M)
40-14MDF	-14MDF	0.23 [6.5]	0.50 [14.2]	1/4 NPT (M)
40-38FDF	-38FDF	0.47 [13.3]	0.50 [14.2]	3/8 NPT (F)
40-38MDF	-38MDF	0.29 [8.2]	0.50 [14.2]	3/8 NPSF (F)
40-G14FDF	-G14FDF	0.27 [7.7]	0.50 [14.2]	G 1/4 (F)
40-G14MDF	-G14MDF	0.23 [6.5]	0.50 [14.2]	G 1/4 (M)
40-G38MDF	-G38MDF	0.29 [8.2]	0.50 [14.2]	G 3/8 (M)
40-5X5FDF	-5X5FDF	0.33 [9.4]	0.50 [14.2]	M 5×0.8 (F)
40-5X18FDF	-5X18FDF	1.01 [28.6]	0.50 [14.2]	G 1/8 NPS (F)

$\varnothing 50$ mm Cups

Dual-Flow Fitting	Assembly Suffix	Weight oz [g]	Flow \& 18 inHg [81 kPa] SCFM [NI/m]	Connection Threads
50-18FDF	-18FDF	0.25 [7.1]	0.60 [17.0]	G 1/8 NPS (F)
50-18MDF	-18MDF	0.20 [5.7]	0.60 [17.0]	G 1/8 NPS (M)
50-14MDF	-14MDF	0.25 [7.1]	0.60 [17.0]	1/4 NPT (M)
50-38FDF	-38FDF	0.51 [14.5]	0.60 [17.0]	3/8 NPT (F)
50-38MDF	-38MDF	0.34 [9.6]	0.60 [17.0]	3/8 NPSF (F)
50-G14FDF	-G14FDF	0.39 [11.1]	0.60 [17.0]	G 1/4 (F)
50-G14MDF	-G14MDF	0.28 [7.9]	0.60 [17.0]	G 1/4 (M)
50-G38MDF	-G38MDF	0.34 [9.6]	0.60 [17.0]	G 3/8 (M)
50-5X5FDF	-5X5FDF	0.36 [10.2]	0.60 [17.0]	M5x0.8 (F)
50-5X18FDF	-5X18FDF	1.01 [28.6]	0.60 [17.0]	G 1/8 NPS (F)

Sizing a Vacuum Pump

Using the tables, determine the orifice flow at your system's maximum vacuum operating level. Multiply this by the maximum number of non-sealing cups in the system. Select a pump that will give this total flow-rate at the system vacuum level with an additional factor of safety.

Caution

If Dual-Flow Valves are used with a heavy porous part, the part may be dropped suddenly due to porosity flow through the part being greater than the available orifice flow. This can occur even if there is excess vacuum pump capacity. For this type of system, use Flow Senor Valves.

Reverse Flow

Tri-Flow Valves
Tri-Flow Valves limit vacuum leakage in a system where some of the vacuum cups may not be in sealing contact with the work piece.

Tri-Flow Valves are a cross between Flow Sensor Valves and Dual-Flow Valves because they are fully open until the Flow Sensor section closes at the factory preset vacuum flow-rate, then a bypass orifice meters vacuum flow to limit leakage to a manageable rate. Part release is accomplished by removing the vacuum source and admitting atmospheric air which will also reset any closed Tri-Flow Valves to the open position. For a faster cycle time, use a blow-off pulse of compressed air to break the vacuum and release the part more quickly.

Tri-Flow Valves can handle greater porosity flow than Dual-Flow Valves due to the fact that they're initially held open. Another advantage is the Tri-Flow metering orifice is protected by an integral filter for greater tolerance for contamination.

The normal way to set up a vacuum system using Tri-Flow Valve equipped vacuum cups is to bring them into contact with the work piece and then turn on the vacuum source. Non-sealing cups will leak and cause the associated Tri-Flow Valves to close to orifice flow only. Tri-Flow Valves on cups in sealing contact with the work piece will remain fully open to handle higher porosity flow-rates (normal leakage through the part) then Dual-Flow Valves can.

For a system handling non-porous parts, operation can be as described above or the vacuum source may be turned on before the vacuum cups are in sealing contact with the work piece. Tri-Flow Valves will reset to fully open. This feature is also convenient for use in vacuum holding fixtures. This capability is the only advantage that Tri-Flow Valves have over Flow Sensor Valves.

For mid to high porosity parts, we recommend using Flow Sensor Valves where the closing set point can be adjusted to suit the application.

To order a cup assembled with a Tri-Flow Valve, add suffix -18TFT to the part number.

Example: XP-B50N-18TFT

To order for use in-line, order T18F-XX. (Specify flow.)

Fully Open
Flow-Rate: 0.5 SCFM

Orifice Flow
Check valve will reopen if porosity flow is below about half of closing set-point.

Tri-Flow Valve In-line	Weight oz [g]	Connection Threads	Tri-Flow Valve w/ Cup Fitting	Weight oz [g]	Flow @ 18 inHg	Closing Flow
TF18F-0.4	$0.43[12.2]$	G 1/8 NPSF	$32-18 F T F$	$0.55[15.7]$	0.2 SCFM	0.4 SCFM
TF18F-0.5	$0.43[12.2]$	G 1/8 NPSF	$40-18 F T F$	$0.63[17.2]$	0.4 SCFM	0.5 SCFM
TF18F-0.6	$0.43[12.2]$	G 1/8 NPSF	$50-18 F T F$	$0.66[18.8]$	0.5 SCFM	0.6 SCFM

Flow Sensor Valves (PATENTED)

Flow Sensor Valves (FSV) are normally open valves that snap closed when the factory preset flow-rate is exceeded. Our FSV is insensitive to acceleration forces and may be used in any physical orientation. System vacuum level has no affect on the FSV set-point. However, higher system vacuum levels will cause greater flow-rates through a porous work piece.

Flow Sensor Valves eliminate the problem of vacuum loss through non-working standard cups or through valved cups overhanging the work piece edge. These are especially useful where work piece size and orientation will vary. For maximum effectiveness, each vacuum cup in the system should be equipped with a Flow Sensor Valve.

Flow Sensor Valves may be manifold or located in-line rather than at the vacuum cup. Piping integrity is important since the FSV will sense a fitting leak as easily as a leakage at a vacuum cup. Wherever installed, a suitable filter must be used upstream of the FSV. When used with EDCO fittings, a filter screen nests inside the fitting bore.

The optimum flow-rate set-point is best determined by testing the porosity of sample work pieces with a flow meter using the same vacuum cup size and style as will be used in the actual system. Porosity of items such as corrugated board can vary greatly from lot to lot so it is important to find the most porous part to be handled by the system.

A factor of safety must be added to the highest porosity test value to allow for variations in work piece porosity, system vacuum level, increased leakage due to wear, and other
factors. For porous work pieces such as paper or corrugated cases, the factor of safety should probably be in the 50% range. For non-porous work pieces such as plastic or metal, the factor or safety may be reduced.
It is necessary to size the vacuum pump to have enough capacity to close all Flow Sensor Valves where cups are not sealed against a work piece plus the total "porosity" flow through the sealed cups. EDCO air powered multi-stage vacuum pumps are ideally suited since they produce large vacuum flow-rates at low vacuum levels (0-10 inHG) and can provide the flow necessary to close a large number of Flow Sensor Valves.

When used with large, bellows style vacuum cups, the cup should be pressed against the work piece to collapse the bellows before turning on the vacuum. This prevents accidentally activating the FSV by the high, instantaneous flow-rate caused by the bellows collapsing under the vacuum.

The FSV will automatically reset when the vacuum is turned off for a short period of time. If desired, a pressure pulse can be used to back flow the FSV to clean off the inlet filter. This blow-off pulse will reset the FSV and will quickly release the work piece.

The FSVM version includes a monitor port where a vacuum sensor can be used to monitor whether the FSV is open or closed.

Note: Flow Sensor Valves are calibrated using a flow meter. Field adjustment is not practical or suggested.

FSV-10: Flow Sensor Valve, 10-32 UNF (M5)

	Set Point ${ }^{1}$	Connection Type	
FSV-10- 0.1			
	0.1-0.6 SCFM	(Blank)	10-32 UNF (M5) Female
	${ }^{1} 0.1$ Increments	-8	4-8 mm Cup Size
		-10	10-15 mm Cup Size
		-32MS	25-35 mm Cup Size

Weight: 0.16 oz [4.4 g]

Ø 4-8 mm Cup Size 8-10M Cup Fitting

Ø 10-15 mm Cup Size 10-10M Cup Fitting

Ø 25-35 mm Cup Size 32-10MS Cup Fitting

FSV-18: Flow Sensor Valve, G 1/8 NPSF

	Set Point ${ }^{1}$	Connection Type	
FSV-18-	0.3		
	0.3-2.3 SCFM	(Blank)	G 1/8 NPSF Male
	${ }^{1} 0.1$ Increments	-18M	1/8 NPT Male
		-10	10-15 mm Cup Size
		-32	25-35 mm Cup Size
		-40	40 mm Cup Size
		-50	50 mm Cup Size

Weight: 0.99 oz [28.2 g]

-40
40-18F Cup Fitting

-50
50-18F Cup Fitting

-18M
1/8 NPT Male Fitting

FSV-12: Flow Sensor Valve, 1/2 NPT

	Set Point 1
FSV-12-	0.5
	$0.5-6.0$ SCFM

Weight: 3.26 oz [92.6 g]

Mechanical Valves
Mechanical valves are used with a vacuum cup in systems having a central vacuum pump and an array of vacuum cups to pick up a family of workpieces that vary by known values of width or length. Mechanical valves are used to seal off cups that are not directly over a workpiece to limit leakage into the vacuum system since these cups are not sealing. If the workpiece edge positions vary randomly, a mechanical valve could be opened by the workpiece but with a portion of the vacuum cup overhanging the edge causing leaking which would defeat the purpose of using mechanical valves.

Mechanical valves are closed until the valve stem contacts a workpiece to open the valve and admit vacuum to the vacuum cup to allow gripping the workpiece. Since mechanical valves are mechanically operated by contact with a workpiece, there is a possibility for the valve stem to leave a mark if there is any relative movement. It is good practice to avoid using mechanical valves for delicate or highly polished surfaces and to make sure that vacuum cup movement is perpendicular to the workpiece surface.

MV-B50 \& MV-2B50: Mechanical Valve for XP-B50 \& XP-2B50
To order full assembly with vacuum cup:

${ }^{1}$ Not available on 2B50.

MV-B110: Mechanical Valve for XP-B110

To order full assembly with vacuum cup:

Mechanical Valves

MV-F75: Mechanical Valve for XP-F75

To order full assembly with vacuum cup:

MV-F110 \& MV-F150: Mechanical Valve for XP-F110 \& XP-F150
To order full assembly with vacuum cup:

Low-Profile Cone Valve w/ Vacuum Cups

	Cup Size		up Material ${ }^{1}$		Cup Fitting	
XP-F	50		A		18M	-CV
	30 Ø 30 mm	A	Ameriflex		G 1/8 NPSF Male	
	40 Ø 40 mm	D	Duramax		30 mm Cup Only	
	$50 \varnothing 50 \mathrm{~mm}$	N	Nitrile		G 1/8 NPSF Female	
		S	Silicone		40 \& 50 mm Cup Only	
		V	Viton			

Release Check Valves

RC18: Release Check Valve

The RC18A release check valve employs a normally closed valve to seal against pump vacuum without leaking. When a compressed air supply is applied, the release valve shifts to open at only 5 psi (0.3 bar) so that a full-flow burst of air can quickly dissipate (blow-off) system vacuum (minimum 5 psi air supply required). Once shifted, the valve doesn't try to close, but remains open. Once the compressed air source is removed, the valve automatically resets to a closed position. The RC18A should be used for high-flow vacuum release applications such as those involving vacuum reservoirs or larger, single-stage or multi-stage vacuum pumps.

Competitive products are simply check valves with a 30-40 psi (2-3 bar) cracking pressure. The

50 psi Max Air Pressure Weight: Ibs [g] 0.11 [48.5] high cracking pressure is necessary to insure a tight seal against vacuum developed by the pump. When a compressed air supply is applied to open the valve for blow-off, the internal spring immediately tries to close the valve as soon as flow begins. This has the effect of subtracting the valve cracking pressure from the blow-off air pressure. Because of this, these systems normally have to operate at above 50 psi (3.5 bar), which wastes compressed air.

Code	Function	Ports
B	Blow-Off	G $1 / 8$ NPSF
1	Blow-Off Air Pulse	G $1 / 8$ NPSF

RC18-040A: Release Check Valve w/ Balancing Orifice

The RC18-040A operates the same as the RC18A but includes a 0.040 in (1 mm) balancing orifice to meter the air-flow when multiple release check valves are supplied air from the same blow-off control valves. Without the balancing orifice in each release check valve, the air would follow the path of least resistance. This would starve some release check valves of air while others would have a flow many times greater than necessary.

50 psi Max Air Pressure
 Weight: Ibs [g] 0.11 [48.5]

Vacuum Check Valves

The Vacuum Check valve is designed to prevent the reverse flow of ambient air into a vacuum system. Vacuum Check valves are used to hold vacuum downstream whenever the vacuum source is removed or lost. Internally, a normally closed valve allows vacuum flow in the pump direction but seals off when vacuum flow ceases. When a Vacuum Check valve is used in a system, some provision must be made to release the trapped vacuum in order to release the work piece. The RC18 and RC18-040 Release Check valves are designed for this purpose.

One application for the Vacuum Check valve is for energy saver circuits using a vacuum storage tank to accumulate and store vacuum for high-volume, short duration flow rate requirements.

More commonly, a Vacuum Check valve with Release Check valve would be used with a single suction cup so a nonporous, high-value work piece would not be immediately dropped if the system vacuum source is lost. The vacuum trapped by the Vacuum Check valve will eventually leak down. The rate at which the vacuum diminishes will depend on the condition of all the components in the vacuum system. To increase the time delay interval, a volume chamber can be added to the auxiliary port. If the volume chamber is equal to twice the cup internal volume, the time delay interval will be approximately tripled, and so forth.

The VC18 should be used with cup diameters of 50 MM and smaller. The VC12 should be used with cup diameters of 75 MM and larger that are available with G1/2 NPS female fittings.

VC18: Vacuum Check Valve, G 1/8 NPSF

Code	Function	Ports
V	Vacuum Source	G $1 / 8$ NPSF
2	Vacuum	G $1 / 8$ NPSF
2 A	Alternate Vacuum	G $1 / 8$ NPSF

VC12: Vacuum Check Valve, G 1/2 NPSF

(2A)

Vacuum Check Valves

VC18-RCA: Vacuum Check Valve w/ Release Check Valve, G 1/8 NPSF

The vacuum check valve with release check valve is used with a single vacuum cup so a non-porous, high value work piece won't be immediately dropped if the system vacuum source is lost. The vacuum trapped by the vacuum check valve will eventually leak down. The rate at which the vacuum diminishes will depend on the condition of all of the components in the vacuum system.

To increase the time delay interval, a volume chamber can be added to the auxiliary port. If the volume of the chamber is twice that of the internal cup volume, the time delay interval will be approximately tripled and so forth.

See previous pages about release check valves for more information.

Weight: Ibs [g] 0.28 [126.0]

Vacuum Check Valves

VC12-RCA: Vacuum Check Valve w/ Release Check Valve, G 1/2 NPSF

	Release Check Valve	
VC12-	RCA	
	RCA	RC18A
RC040A	RC18-040A	

Code	Function	Ports
V	Vacuum Source	G 1/2 NPSF
1	Blow-Off Air Pulse	G $1 / 8$ NPSF
2	Vacuum	G $1 / 2$ NPSF
2A	Alternate Vacuum	G 1/8 NPSF

Atmospheric Quick Release

AQR-18M

Vacuum generators, or vacuum pumps, are powered by compressed air to create vacuum. When the air source is turned off, vacuum is dissipated by atmospheric air entering the exhaust port and reverse flowing through the last venturi nozzle. This works well for slow cycle speeds and small cups but when relatively large cups are used with small vacuum generators then reverse air flow may not be sufficient to dissipate residual vacuum fast enough.

Weight: 0.64 oz [18.1 g]

The AQR valve is spring-biased open but is held closed by air pressure supplied to the vacuum generator. When the air supply is turned off, vacuum is no longer generated and the AQR valve opens a large passage to atmosphere so that vacuum is quickly dissipated to release the work object.

Examples

Code	Function	Ports
1	Air Supply (Common w/ Pump)	G $1 / 8$ NPSF
R	Release (Connect to Vacuum)	G $1 / 8$

Swivel Joints
Swivel joints are recommended for applications where a vacuum cup is used to lift rounded or rotating products. Our swivel joints use a brass body, stainless steel shaft, and Nitrile seals. We offer a range of sizes and connections while each swivel joint operates in the same way. A coaxial connection between the vacuum source and vacuum cup are given 30 degrees of total movement while also being free to rotate on its axis.

SJ12

Weight: 0.34 Ibs [5.4 g]

Weight: $0.31 \mathrm{lbs}[5.0 \mathrm{~g}]$

SJ12-18M

Weight: $0.30 \mathrm{lbs}[4.8 \mathrm{~g}]$

SJ18

Weight: $0.02 \mathrm{Ibs}[0.3 \mathrm{~g}]$

Tee Adapters

Tee adapters can be used in a similar way as side vacuum port vacuum cup fittings. The provided plug allows the tee adapter to be used as an angle adapter. Tee adapters can also be used to daisy chain vacuum tubing from one cup to the next. By simply removing the plug, tubing can be daisy chained from a vacuum source to several vacuum cups.

TA12: Tee Adapter, G 1/2 NPS

TA12-8M Weight: $2.51 \mathrm{oz}[71.0 \mathrm{~g}]$

TA12-8F
Weight: 1.89 oz [53.6 g]

TA18: Tee Adapter, G 1/8 NPSF

Level Compensators

Level compensators are primarily used to compensate for height differences on a work-piece surface. Installation should be done in a manner that allows all of the level compensators to be fully extended while supported the load. For special applications, such as sheet feeding, level compensators can be staggered so lifting begin at the edge or corner to assist in sheet separation.

Level compensators also serve as shock absorbers to prevent damage to work-pieces and allow greater positioning latitude for robotic applications. Extensive use of aluminum reduces the weight of EDCO USA level compensators by as much as 60\%.

LC10: Level Compensator, 10-32 UNF (M5) w/ Ø 10-15 mm Vacuum Cup Mount

LC10: Level Compensator, 10-32 UNF (M5)

${ }^{1}$ Non-Rotating option only available for 8 mm and 50 mm stroke length.

LC18: Level Compensator, G 1/8 NPSF

Standard

Non-Rotating

20 mm Clamp Mount

Part Number	A in [mm]	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	Weight oz [g]
LC18	$2.89[73.4]$	$1.38[35.1]$	$0.79[20.1]$	$1.06[30.1]$
LC18-NR	$2.98[75.6]$	$1.61[40.8]$	$0.78[19.8]$	$1.06[30.1]$
LC18-20	$2.89[73.4]$	$1.38[35.1]$	$0.79[20.1]$	$1.15[32.6]$
LC18X35	$4.47[114.0]$	$2.33[59.2]$	$1.40[35.6]$	$1.49[42.2]$
LC18X35-NR	$4.54[115.2]$	$2.56[64.9]$	$1.39[35.3]$	$1.46[41.5]$
LC18X35-20	$4.47[114.0]$	$2.33[59.2]$	$1.40[35.6]$	$1.94[55.1]$
LC18X50	$5.75[146.0]$	$2.97[75.4]$	$2.00[50.8]$	$1.83[52.0]$
LC18X50-NR	$5.84[148.3]$	$3.21[81.5]$	$2.04[51.8]$	$1.78[50.5]$
LC18X50-20	$5.75[146.0]$	$2.97[75.4]$	$2.00[50.8]$	$2.48[70.1]$

LC18: Level Compensator, G 1/8 NPSF

-SP: Side-Port Option

The side-port option for the LC18 family of level compensators is perfect when you need a side port for your vacuum supply rather than the standard in-line. A P18 is inserted into the vacuum port and an adapter is installed on the cup end of the level compensator. Both the side port and cup end connection threads are G $1 / 8$ NPSF. An M5 port has been added opposite of the vacuum supply connection for monitoring purposes.

For full dimensions, simply add the provided specifications to the base specifications for the level compensator selected.

Additional Weight: $0.38 \mathrm{oz}[10.9 \mathrm{~g}]$

LC12: Level Compensator, G 1/2 NPSF

Heavy-Duty Level Compensators
Heavy-Duty Level Compensators have the strength necessary for loads associated with larger vacuum cup diameters. Widely spaced shaft bearings all mounting in either vertical or horizontal shaft orientations.It? Alarissum di sederfeciem

		Inlet Thread	Stroke Length		Cup End Thread	
LC	14F		X25		38M	
	14F	1/4 NPSF Female	X25	25 mm	14F	1/4 NPSF Female
	38M	3/8 NPTF Male	$\times 50$	50 mm	38M	3/8 NPTF Male
	12M	1/2 NPTF Male			12M	1/2 NPTF Male
	G14F	G 1/4 Female			G14F	G 1/4 Female
	G38M	G 3/8 Male			G14M	G 1/4 Male
	G12M	G 1/2 Male			G38M	G 3/8 Male
					G12M	G 1/2 Male

Base weight calculated without couplers.

Couplers

After picking an inlet and cup end thread, see the below couplers for additional dimensions.

-14F

Threads:	$1 / 4$ NPT Female
Weight: $\mathrm{oz}[\mathrm{g}]$	$0.27[7.8]$

-38M

External Spring Level Compensators

LCE level compensators are only suitable for vertical mount applications where low cost is the primary concern. The short bearing length dictates a vertical shaft mounting orientation and care should be taken to avoid shear loads which will cause premature shaft and bearing wear.

LCE w/ Male Connection

LCE w/ Female Connection

External Spring Level Compensators

LCE w/ Integral Cup Fitting

Part Number		A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	Weight oz [g]
Fine - M16X1.0	Coarse - M16X1.5		$3.31[84.1]$	$0.39[10.0]$
LCEF14X10-__	LCE.79 [79.2]			
LCEF14X30-__	LCEC14X30-_	$4.89[124.0]$	$1.18[30.0]$	$3.62[102.7]$
LCEF14X50-_	LCEC14X50-_	$6.46[164.0]$	$1.97[50.0]$	$4.47[126.6]$
LCEF14X70-_	LCEC14X70-_	$8.05[204.0]$	$2.76[70.0]$	$5.36[152.0]$

Weights and dimensions calculated using -32 cup fitting.

LCP: Level Compensators w/ Integral Pump

A vacuum pump integrated within a level compensator provides a simple point-of-use system that is easier to apply than two components separately. While the level compensator provides compliance, vacuum is generated directly at the vacuum cup, improving response time for both attaching to and detaching from a work-piece.

Standard

Non-Rotating

Part Number	A in [mm]	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	Weight oz $[\mathrm{g}]$
LCP___-14X20	$3.02[76.6]$	$1.38[34.9]$	$0.85[21.6]$	$1.12[31.8]$
LCP__-14X35	$4.31[109.3]$	$2.33[59.1]$	$1.19[30.2]$	$1.51[42.9]$
LCP__-14X50	$5.57[141.4]$	$2.98[75.7]$	$2.00[50.7]$	$1.85[52.3]$
LCP___-14X20NR	$3.17[80.4]$	$1.61[40.8]$	$0.77[19.6]$	$1.16[32.8]$
LCP__-14X35NR	$4.47[113.4]$	$2.56[64.9]$	$1.32[33.5]$	$1.52[43.1]$
LCP__-14X50NR	$5.73[145.4]$	$3.21[81.5]$	$1.93[48.9]$	$1.83[51.8]$

LCP: Level Compensators w/ Integral Pump

Performance

SCFM

Level Compensator Spring Data

Level Compensator	Force Exerted (Extended)	Force Exerted (Collapsed)	Spring Force
LC10×50-10	0.18 lbs	0.23 lbs	$1.30 \mathrm{lbs} / \mathrm{in}$
LC10	0.18 lbs	0.23 lbs	$1.30 \mathrm{lbs} / \mathrm{in}$
LC10×20	0.20 lbs	0.32 lbs	$0.15 \mathrm{lbs} / \mathrm{in}$
LC10X50	0.20 lbs	0.38 lbs	$0.15 \mathrm{lbs} / \mathrm{in}$
LC18	0.20 lbs	0.50 lbs	$0.15 \mathrm{lbs} / \mathrm{in}$
LC18X35	0.82 lbs	2.40 lbs	$2.00 \mathrm{lbs} / \mathrm{in}$
LC18X50	0.20 lbs	0.90 lbs	$0.50 \mathrm{lbs} / \mathrm{in}$
LC12	0.20 lbs	1.20 lbs	$0.50 \mathrm{lbs} / \mathrm{in}$
Heavy Duty (25 mm Stroke)	3.00 lbs	4.50 lbs	$1.50 \mathrm{lbs} / \mathrm{in}$
Heavy Duty (50 mm Stroke)	3.00 lbs	4.50 lbs	$0.75 \mathrm{lbs} / \mathrm{in}$
Ext Spring (10 mm Stroke)	1.10 lbs	1.36 lbs	$0.67 \mathrm{lbs} / \mathrm{in}$
Ext Spring (30 mm Stroke)	1.10 lbs	1.90 lbs	$0.68 \mathrm{lbs} / \mathrm{in}$
Ext Spring (50 mm Stroke)	1.10 lbs	2.44 lbs	$0.68 \mathrm{lbs} / \mathrm{in}$
Ext Spring (70 mm Stroke)	1.10 lbs	2.91 lbs	$0.66 \mathrm{lbs} / \mathrm{in}$
LCP (20 mm Stroke)	0.82 lbs	2.40 lbs	$2.00 \mathrm{lbs} / \mathrm{in}$
LCP (35 mm Stroke)	0.20 lbs	0.90 lbs	$0.50 \mathrm{lbs} / \mathrm{in}$
LCP (50 mm Stroke)	0.20 lbs	1.20 lbs	$0.50 \mathrm{lbs} / \mathrm{in}$

System Accessories
 Section 5

FDED LLSA

Mechanical Switches

Vacuum Switch Protector

Inline Filter

Electronic Sensors

T-Style Filters

Pipe Plugs

Digital Sensors

Aluminum Base Filters

Silencers

Mechanical Switches	3
Electronic Sensors	5
Digital Sensors	6
Vacuum Switch Protector	9
T-Style Filters	9
Alumium Base Filters	10
Inline Filter	12
Pipe Plugs	12
Silencers	13

Mechanical Pressure Switches
PSA18-E: Electrical Output
Electrical Pressure Sensors come with UL and CSA snap action, silver contact, SPDT (Single Pole Double Throw) switch with 0.187 in (4.75 mm) spade terminals. Triple terminal electrical connector and insulator kit for attaching wires is included.

Construction: aluminum housing, stainless steel spring and fasteners, Kapton ${ }^{\circledR}$ type HN film diaphragm

Set Point Adjustment

PSA18-NOP / PSA18-NCL: Pneumatic Output

Pneumatic Pressure Sensors are available in normally-closed (NCL) and normallyopen (NOP) versions. Normally-closed (NCL) sensors open to pass air when the desired set point is achieved. Normally-open (NOP) sensors close to block air when the desired set point is achieved. Both versions have integral 5/32 in (4 mm) tube connectors.

Construction: aluminum housing, stainless steel spring and fasteners, Kapton ${ }^{\circledR}$ type HN film diaphragm

Port 1- Air Supply
Port 2 - Output Signal

Presure Adjustment Range:	22 to $110 \mathrm{psi}[1.5$ to 8.0 bar$]$
Temperature Range:	$14^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left[-10^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right]$
Electrical:	$5 \mathrm{Amp} @ 125 \mathrm{~V} \mathrm{AC}, 250 \mathrm{~V} \mathrm{AC} \mathrm{Max}$
Air Valve:	20 to $115 \mathrm{psi}[1.4$ to 7.9 bar$] ; \mathrm{CV}=0.06 ; 2.5 \mathrm{SCFM}[71 \mathrm{NI} / \mathrm{m}]$
Weight:	$3.20 \mathrm{oz}[90.7 \mathrm{~g}]$

Mechanical Vacuum Switches

VSA18-E: Electrical Output

Electrical Pressure Sensors come with UL and CSA snap action, silver contact, SPDT (Single Pole Double Throw) switch with 0.187 in (4.75 mm) spade terminals. Triple terminal electrical connector and insulator kit for attaching wires is included.

Construction: aluminum housing, stainless steel spring and fasteners, nylon reinforced Nitrile diaphragm

Set Point Adjustment

VSA18-NOP / VSA18-NCL: Pneumatic Output

Pneumatic Vacuum Sensors are available in normally-closed (NCL) and normallyopen (NOP) versions. Normally-closed (NCL) sensors open to pass air when the desired set point is achieved. Normally-open (NOP) sensors close to block air when the desired set point is achieved. Both versions have integral 5/32 in (4 mm) tube connectors.

Construction: aluminum housing, stainless steel spring and fasteners, nylon reinforced Nitrile diaphragm

Port 1- Air Supply
Port 2 - Output Signal

Set Point Adjustment

Vacuum Adjustment Range:	-8 to $-28 \mathrm{inHG}[-27.1$ to 94.8 kPa$]$
Temperature Range:	$-20^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left[-29^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right]$
Electrical:	$5 \mathrm{Amp} @ 125 \mathrm{~V} \mathrm{AC}, 250 \mathrm{~V} \mathrm{AC} \mathrm{Max}$
Air Valve:	20 to 100 psi $[1.4$ to 6.9 bar$] ; \mathrm{Cv}=0.06 ; 2.5 \mathrm{SCFM}[71 \mathrm{NI} / \mathrm{m}]$
Weight:	$2.10 \mathrm{oz}[59.0 \mathrm{~g}]$

V-Style Electronic Sensors

Media:	Non-Lubricated Air, Non-Corrosive Gas
Maximum Pressure:	29 psi [200 kPa]
Rated Pressure Range:	0 to -29.5 inHG [0 to 100 kPa]
Operating Pressure:	$14^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}\left[-10^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right]$
Storage Temperature:	$-4^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}\left[-20^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right]$
Humidity:	35\% to 85\% RH
Electrical Connection:	-3 = 3-Pin Pico 8 mm Connector -4 $=4$-Pin Pico 8 mm Connector
Operating Voltage:	10.8 to 30 V DC (including ripple)
Current Consumption:	20 mA Max
Display:	Red LED
Circuit:	Analog, NPN, PNP
Setting Accuracy:	$\pm 3 \%$ F.S. Max
Hysteresis:	Fixed, 2\% F.S. Max
Switching Capacity:	30 V DC, 80 mA Max
Response Time:	Approximately 1 ms
Vibration:	10 to 55 Hz 1.5 mm Max, XYZ for 2 hours
Shock:	$1,000 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{XYZ}$
Insulation Resistance:	$100 \mathrm{M} \Omega$ Min
Dielectric Strength:	500 V AC for 1 Minute
Analog Output Voltage:	$\begin{gathered} 0 \mathrm{inHG}[0 \mathrm{kPa}]=1 \pm 0.04 \mathrm{~V} \mathrm{DC} \\ -29.5 \mathrm{inHG}[-100 \mathrm{kPa}]=5 \pm 0.04 \mathrm{~V} \mathrm{DC} \end{gathered}$
NPN Output Voltage	0.8 V DC Max
PNP Output Voltage:	1.8 V DC Max

1. Brown (+)
2. White (not used)
3. Blue (-)
4. Black (OUT)

Full data sheet with specs, wiring diagram, and operation procedures available at www.edcousa.net.

61 Series Electronic Sensors

Media:	non-lubricated air, non-corrosive gas
Maximum Pressure:	29 psi [200 kPa]
Rated Pressure Range:	0 to -29.5 inHG [0 to 100 kPa]
Operating Pressure:	$14^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left[-10^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right]$
Storage Temperature:	$-4^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}\left[-20^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right]$
Humidity:	35\% to 85\% RH
Electrical Connection:	4-Pin Pico 8 mm Male Connector
Operating Voltage:	10.8 to 26.4 V DC (including ripple)
Current Consumption:	35 mA Max
Display:	2 Digit, 7 Segment Red LED
Rated Display:	0 to 99
Units:	Percent Vacuum [kPa]
Output Display:	Set (1) - Red LED; Set 2 - Green LED
Display Cycle:	4 Hz
Resolution:	± 1 Count
Setting Accuracy:	$\pm 3 \%$ F.S. Max
Hysteresis:	61 - Adjustable Approx 0\% to 15\% F.S. 62 - Fixed 2\% F.S. Max
Switching Capacity:	30 V DC, 80 mA Max
Response Time:	Approximately 2 ms
Vibration:	10 to 55 Hz 1.5 mm Max, XYZ for 2 hours
Shock:	$196 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{XYZ}$
Insulation Resistance:	$100 \mathrm{M} \Omega$ Min
Dielectric Strength:	500 V AC for 1 Minute
Analog Output Voltage:	$\begin{gathered} 0 \text { inHG }[0 \mathrm{kPa}]=1 \pm 0.1 \mathrm{~V} \mathrm{DC} \\ -29.5 \mathrm{inHG}[-100 \mathrm{kPa}]=5 \pm 0.2 \mathrm{~V} \mathrm{DC} \end{gathered}$
Analog Output Current:	1 mA Max
Analog Hysteresis / Linearity:	$\pm 0.5 \%$ F.S.
NPN Output Voltage	0.8 V DC Max
PNP Output Voltage:	1.2 V DC Max
Thermal Error:	$\pm 0.1 \%$ F.S. $/{ }^{\circ} \mathrm{C} \mathrm{Max}$ in range of $32^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}\left[0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right]$

Red LED Output

Order Cables Separately

Part Number	Description
4QD2	4-Pin Quick Disconnect, 2 M
4QD5	4-Pin Quick Disconnect, 5 M

Full data sheet with specs, wiring diagram, and operation procedures available at www.edcousa.net.

100 Series Digital Sensors

G 1/8-27 NPSF
300 mm Cable w/ 8 mm
Male 4-Pin Connector

Full data sheet with specs, wiring diagram, and operation procedures available at www.edcousa.net.

200 Series Digital Sensors

Full data sheet with specs, wiring diagram, and operation procedures available at www.edcousa.net.

VSP-18: Vacuum Switch Protector

Bi-directional VSP-18 protects vacuum switches or gauges from positive pressure spikes by relieving pressure in excess of 10 psi [0.7 bar] to atmosphere.

Connects to $1 / 8-27$ NPSF or G 1/8-28 threads.

T-Style Vacuum Filters

Our T-Style Vacuum Filters are made of rugged nylon body with a transparent nylon bowl for checking the condition of the filter at a glance. HDPE filter elements can be easily and quickly replaced without disturbing the system plumbing. T-Style Vacuum Filters are rated for full vacuum or pressure up to 150 psi.

Part Number	Ports	$\begin{gathered} \text { A } \\ \text { in }[\mathrm{mm}] \end{gathered}$	B in [mm]	$\begin{gathered} \text { C } \\ \text { in }[\mathrm{mm}] \end{gathered}$	$\begin{gathered} \text { D } \\ \text { in [mm] } \end{gathered}$	Weight lb [g]	Filter Element (3 Pack)
PPSF125X10	1/8 NPT Female	3.06 [77.7]	2.42 [61.5]	1.86 [47.2]	1.98 [50.3]	0.13 [59.0]	PPX10RE3
PPSF250X10	1/4 NPT Female	3.06 [77.7]	2.42 [61.5]	1.86 [47.2]	1.98 [50.3]	0.11 [49.9	PPX10RE3
PPSF250MX10	1/4 NPT Male	3.06 [77.7]	2.42 [61.5]	1.86 [47.2]	1.98 [50.3]	0.11 [49.9]	PPX10RE3
PPSF375X10	3/8 NPT Female	3.06 [77.7]	2.42 [61.5]	1.86 [47.2]	1.98 [50.3]	0.16 [72.6]	PPX10RE3
PPSF500X35	1/2 NPT Female	3.64 [92.5]	5.35 [136.0]	2.95 [74.9]	4.80 [122.0]	0.37 [168.0]	PPX35RE3
PPSF750X35 ${ }^{1}$	3/4 NPT Female	3.60 [91.4]	5.40 [137.2]	2.93 [74.4]	4.68 [118.7]	0.40 [181.0]	PPX35RE3
PPSF100×501	1 NPT Female	4.62 [117.0]	6.36 [162.0]	4.00 [102.0]	5.60 [146.0]	0.94 [426.0]	PPX50RE3
PPSF150X75	1-1/2 NPT Female	5.16 [131.0]	8.10 [206.0]	4.00 [102.0]	6.93 [176.0]	1.18 [535.0]	PPX75RE3

[^0]Aluminum Base Filters
EDCO aluminum base filters work in the same way as our t-style filters. An aluminum base allows for easy mounting of the filter. A clear, nylon bowl allows for quick inspection of the HDPE filter element. When it's time to change the element, the bowl can easily be removed to replace the filter very quickly. We stock standard replacement bowls, gaskets, and filter elements. Optional mounting plates are offered for applications where mounting via the bottom face is not desired.

ASF375X10: Aluminum Base Filter, 3/8 NPTF

Replacement Filter Elements: PPX10RE3

Weight: 8.22 oz [233.0 g]

Code	Function	Ports
I	Flow In	$3 / 8 \mathrm{NPTF}$
O	Flow Out	$3 / 8 \mathrm{NPTF}$
A	Auxiliary / Monitor	G $1 / 8 \mathrm{NPSF}$

ASF-X10-K: Mounting Kit

Optional mounting kit includes a steel bracket and two flat head cap screws.

Additional Weight: 1.64 oz [46.4 g]

Aluminum Base Filters

Aluminum Base Filter w/ 1/2" \& 3/4" Ports

		Size		Threads	
ASF	500		X35		
	500	1/2" Ports		(Blank)	NPT Threads
	750	3/4" Ports		-G	G Threads

Replacement Filter Elements: PPX35RE3

Weight: 25.70 oz [728.6 g]

Weight: 24.38 oz [691.1 g]

Code	Function	ASF500X35	ASF500X35-G	ASF75X35	ASF75X35-G
I	Flow In	$1 / 2$ NPTF	G $1 / 2$	$3 / 4$ NPTF	G 3/4
O	Flow Out	$1 / 2$ NPTF	G $1 / 2$	$3 / 4$ NPTF	G 3/4
A	Auxiliary / Monitor	G $1 / 8$ NPSF			

F10-18F: In-Line Filter
The rugged F10-18F in-line filter is designed to carry the full load of 50 mm and smaller vacuum cups. The in-line filter is ideal for use with Flow Sensor or Tri-Flow Valves in extremely dusty environments such as woodworking shops. The F10-18F provides more than 10 times the surface area of a standard FSV filter disk, providing a longer life. A quick-release (blow-off) may be used to momentarily back-flow the filters to help keep them clean.

Construction: anodized aluminum body, polyethylene element, and stainless steel fasteners
Replacement Filter Disk: FD-116

Weight: $0.14 \mathrm{lb}[61.3 \mathrm{~g}]$

Pipe Plugs

All pipe plugs are nickel plated aluminum with a Nitrile o-ring seal.

Silencers

Straight Thru Silencers (ST)

Part Number	Threads	A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	Weight oz [g]
STA18M	G 1/8 NPS	$2.65[67.3]$	$0.74[18.8]$	$0.25[7.1]$
STA14M	G 1/4 NPT	$2.65[67.3]$	$0.74[18.8]$	$0.25[7.1]$
STB38M	G 3/8 NPT	$4.14[105.2]$	$1.24[31.5]$	$0.74[2.10]$
STB12M	G 1/2 NPS	$4.14[105.2]$	$1.24[31.5]$	$0.78[22.1]$
STC12M	G 1/2 NPS	$4.12[104.6]$	$1.48[37.6]$	$1.09[30.9]$
STC34M	G 3/4 NPT	$4.12[104.6]$	$1.48[37.6]$	$1.16[32.9]$
STC10M	G 1 NPT	$4.12[104.6]$	$1.48[37.6]$	$1.31[37.1]$
STC12M-6	G 1/2 NPS	$6.00[152.4]$	$1.48[37.6]$	$1.59[45.1]$
STC34M-6	G 3/4 NPT	$6.00[152.4]$	$1.48[37.6]$	$1.66[47.1]$
STC10M-6	G 1 NPT	$6.00[152.4]$	$1.48[37.6]$	$1.76[49.9]$

Side Discharge Silencers (AA)

Part Number	Threads	A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	Weight oz [g]
AA18M	$1 / 8$ NPT	$1.18[30.1]$	$0.60[15.2]$	$0.11[3.1]$
AA14M	$1 / 4$ NPT	$1.18[30.1]$	$0.60[15.2]$	$0.14[4.0]$
AA38M	3/8 NPT	$1.87[47.5]$	$0.96[24.3]$	$0.21[6.0]$
AA12M	$1 / 2$ NPT	$1.87[47.5]$	$0.96[24.3]$	$0.46[13.0]$

AX Series Vacuum Pumps Section 6

FDPD LISA

Z Option

G 1/2 NPSF Bases
Large Capacity

Options

G 1/8 NPSF Bases

G 1/8 NPSF Bases w/ Integral Filter

G 1/2 NPSF Bases

Pump Manifolds

Information	3
Z Option	4
G $1 / 8$ NPSF Base	5
G 1/2 NPSF Base	6
G 1/2 NPSF Base (Large Capacity)	8
G 1/8 NPSF Base (Integral Filter)	10
Options	17
Pump Manifolds	19
Performance	21

Basic Information
EDCO USA AX Series multi-stage vacuum pumps provide a wide array of styles and configurations to meet your system requirements.

- Modular design allows for stacking up to four pump capacities.
- Wide-range ejector nozzles can operate from 45 to 87 psi [3 to 6 bar].
- Proven coaxial technology provides greater efficiency than conventional ejectors.
- M-Series ejectors may be operated at low air feed pressure for protection from fluctuating factory air-supply pressures.
- L-Series ejectors produce high-vacuum flow suitable for handling porous objects or overcoming other system leakage.
- AX pumps operate at a lower air-pressure so fluctuations in plant air pressure will not affect vacuum pump performance.
- Multi-stage pump modules allow for fast evacuation and greater efficiency.
- Integrated solenoid valves eliminate extra plumbing. Low-power 24 V DC, 1.3 W coils are employed to reduce loads on PLC controllers.
- Choose from solenoid controlled, air-pilot controlled, or simple air-supply controls.
- Integrated solenoid valves control blow-off with adjustable flow controls are available.
- Automatic blow-off modules for single-input controls are available.
- Choose from a variety of different vacuum switches for system monitoring.
- Vacuum filters are replaceable.
- Manifold versions with 1 to 10 stations in common or separate air-supply configurations with control and sensing options are available.
- Manifolds include piped exhaust. Exhaust silencers are optional.
- High-quality finish includes anodizing or electroless nickel plating, stainless steel fasteners, stainless steel tie-rods, and glass-reinforced PPS pump modules and valve plates.
- Choose from many standard EDCO pump bases or selection the Z Base option for integration into your custom design.
- AX series vacuum pumps come fully factory assembled and ready for installation.

Z Option (Zero / No Base)

- Complete pump module ready for integration into your custom design.
- M3 mounting screws and pump seals are included.
- Can be configured with one or two pump modules for more vacuum flow capacity.

		Series		Capacity		Non-Return Option		Quick Release Option ${ }^{1}$		Sensor Port Option ${ }^{1}$	
AX		L		1	N	-Z					
	L	L-Series	1	1 Ejector		(Blank)	No	(Blank)	None	(Blank)	None
	M	M-Series	2	2 Ejectors		R	Non-Return	-AQR	Atmospheric	-PA5F	M5 Port
										-PA18F	G 1/8 NPSF Port

${ }^{1}$ Sensor Port Options cannot be used with a Quick Release Option.
The AQR option comes standard with an M5x0.8 monitor port.

G 1/8 NPSF Base

- Basic pump with two exhaust ports at 90° - use the one most suitable for your application.
- Can be configured with one or two pump modules for more vacuum flow capacity.

${ }^{1}$ Sensor Port Options cannot be used with a Quick Release Option.
The AQR option comes standard with an M5x0.8 monitor port.

Code	Function	Ports
1	Air Supply	G 1/8 NPSF
2	Vacuum	G 1/8 NPSF
3	Exhaust	G 1/8 NPSF

G 1/2 NPSF Base

- Basic pump includes two exhaust ports at 90° - use the port most suitable for your application.
- Configurable with one to four pump modules for more vacuum flow capacity.
- Two side auxiliary vacuum ports are included.

Code	Function	Ports
1	Air Supply	G 1/8 NPSF
2	Vacuum - Main	G $1 / 2$ NPSF
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF
3	Exhaust	$3 / 8$ NPSF

G 1/2 NPSF Base w/ Solenoid Controlled Air-Supply

- Normally-closed solenoid valve controls vacuum-on, 24V DC, 1.3 W coil.
- Order solenoid cables separately. SV10-QD-1M (See system accessories.)
- Basic pump includes two exhaust ports at 90° - use the port most suitable for your application.
- Configurable with one to four pump modules for more vacuum flow capacity.
- Two side auxiliary vacuum ports are included.

Thru Hole
2 Places

Code	Function	Ports
1	Air Supply	G 1/8 NPSF
2	Vacuum - Main	G 1/2 NPSF
$2 A$	Vacuum - Alternate	G 1/8 NPSF
3	Exhaust	$3 / 8$ NPSF

G 1/2 NPSF Base (Large Capacity)

- Modular design includes rugged aluminum base for ease of installation and servicing.
- Three $1 / 2^{\prime \prime}$ pump vacuum ports simplify vacuum system plumbing - use the most convenient ports and plug the rest.
- Low noise level and fast evacuation times.
- Optional vacuum gauge, exhaust silencer, and foot-mount brackets are available.

Capacity	A in $[\mathrm{mm}]$	Weight oz $[\mathrm{g}]$
2	$1.85[47.0]$	$686.11[24.2]$
3	$1.85[47.0]$	$705.9[24.9]$
4	$2.25[57.2]$	$725.68[25.6]$
5	$2.25[57.2]$	$745.47[26.3]$
6	$2.25[57.2]$	$765.25[27.0]$

Code	Function	NPT	G
1	Air Supply	G $1 / 8$ NPSF	
2	Vacuum - Main	$1 / 2$ NPTF	G $1 / 2$
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	
3	Exhaust	$1 / 2$ NPTF	G $1 / 2$

Mounting Brackets for AX-312 Pumps

Stainless steel mounting brackets attach to the ends of the base. Straight and right angle versions are available.

M5 SHCS (qty 2) Included for easy mounting.
Additional Weight: 1.29 oz [36.4 g]

	Style	
AX-312-BKT-	90	
	90	90° Bracket
	180	180° Bracket

G 1/8 NPSF Base w/ Integral Filter

- Pump with filter and two vacuum ports at 90° - use the most convenient port.
- Configurable with one or two pump modules for more vacuum flow capacity.
- RE10X50 filter element included.

${ }^{1}$ Sensor Port Options cannot be used with a Quick Release Option.
The AQR option comes standard with an M5x0.8 monitor port.

Capacity	A in [mm]	Weight oz [g]
1	$3.34[84.8]$	$7.00[198.7]$
2	$3.74[95.0]$	$7.71[218.5]$

Code	Function	Ports
1	Air Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 8$ NPSF
3	Exhaust	G $1 / 8$ NPSF

G 1/8 NPSF Base w/ Integral Filter \& Pilot Controlled Air-Supply

- Pump with filter and two vacuum ports at 90° - use the most convenient port.
- Includes internal, air-piloted air supply control valve.
- Configurable with one or two pump modules for more vacuum flow capacity.
- RE10X50 filter element included.

${ }^{1}$ Sensor Port Options cannot be used with a Quick Release Option.
The AQR option comes standard with an M5×0.8 monitor port.

Capacity	A in $[\mathrm{mm}]$	Weight oz [g]
1	$3.34[84.8]$	$7.44[211.0]$
2	$3.74[95.0]$	$8.14[230.8]$

Code	Function	Ports
1	Air Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 8$ NPSF
3	Exhaust	G $1 / 8$ NPSF
PS	Pilot, Air-Supply	M5 $\times 0.8$ (10-32 UNF)

G 1/8 NPSF Base w/ Integral Filter \& Pilot Controlled Air-Supply \& Release

- Pump with filter and two vacuum ports at 90° - use the most convenient port.
- Includes internal, air-piloted air supply control valve and internal, air-piloted blow-off control valve with adjustable flow control.
- Configurable with one or two pump modules for more vacuum flow capacity.
- RE10X50 filter element included.

G 1/8 NPSF Base w/ Integral Filter \& Solenoid Controlled Air-Supply

- Pump with filter and two vacuum ports at 90° - use the most convenient port.
- Normally-closed solenoid valve (24V DC, 1.3W coil) controls vacuum-on. (Order cable separately. SV10-QD-1M)
- Configurable with one or two pump modules for more vacuum flow capacity.
- RE10X50 filter element included.

${ }^{1}$ 'Sensor Port Options cannot be used with a Quick Release Option.
The AQR option comes standard with an M5×0.8 monitor port.

Code	Function	Ports
1	Air Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 8$ NPSF
3	Exhaust	G $1 / 8$ NPSF

G 1/8 NPSF Base w/ Integral Filter \& Solenoid Controlled Air-Supply \& Release

- Pump with filter and two vacuum ports at 90° - use the most convenient port.
- Normally-closed solenoid valve (24 V DC, 1.3 W coil) controls vacuum-on.
- Normally-closed solenoid valve (24V DC, 1.3 W coil) controls release (with adjustable flow control).
- Order solenoid cables separately. SV10-QD-1M
- Configurable with one or two pump modules for more vacuum flow capacity.
- RE10X50 filter element included.

Capacity	A in $[\mathrm{mm}]$	Weight oz [g]
1	$3.34[84.8]$	$7.71[218.6]$
2	$3.74[95.0]$	$8.41[238.4]$
Code	Function	Ports
1	Air Supply	G 1/8 NPSF
2	Vacuum	G 1/8 NPSF
3	Exhaust	G 1/8 NPSF

G 1/8 NPSF Base w/ Integral Filter \& N.O. Solenoid Controlled Air-Supply

- Pump with filter and two vacuum ports at 90° - use the most convenient port.
- Normally-opened solenoid valve (24V DC, 1.3W coil) controls vacuum-off. (Order cable separately. SV10-QD-1M)
- Normally-on vacuum retains parts in the event of a power failure.
- Configurable with one or two pump modules for more vacuum flow capacity.
- RE10X50 filter element included.

${ }^{1}$ 'Sensor Port Options cannot be used with a Quick Release Option.
The AQR option comes standard with an M5x0.8 monitor port.

Code	Function	Ports
1	Air Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 8$ NPSF
3	Exhaust	G $1 / 8$ NPSF

G 1/8 NPSF Base w/ Integral Filter \& N.O. Solenoid Controlled Air-Supply \& Release

- Pump with filter and two vacuum ports at 90° - use the most convenient port.
- Normally-opened solenoid valve (24 V DC, 1.3 W coil) controls vacuum-off.
- Normally-on vacuum retains parts in the event of a power failure.
- Normally-closed solenoid valve (24 V DC, 1.3 W coil) controls blow-off (with adjustable flow control).
- Order solenoid cables separately. SV10-QD-1M
- Configurable with one or two pump modules for more vacuum flow capacity.
- RE10X50 filter element included.

Capacity	A in [mm]	Weight oz [g]	
1	$3.34[84.8]$	$7.71[218.6]$	
2	$3.74[95.0]$	$8.41[238.4]$	
Code	Function	Ports	
1	Air Supply	G 1/8 NPSF	
2	Vacuum	G 1/8 NPSF	
3	Exhaust	G 1/8 NPSF	

Release Options

-AQR: Atmospheric Quick Release

Vacuum generators, or vacuum pumps, are powered by compressed air to create vacuum. When the air source is turned off, vacuum is dissipated by atmospheric air entering the exhaust port and reverse flowing through the last venturi nozzle. This works well for slow cycle speeds and small cups but when relatively large cups are used with small vacuum generators then reverse air flow may not be sufficient to dissipate residual vacuum fast enough.

The AQR valve is spring-biased open but is held closed by air pressure supplied to the vacuum generator. When the air supply is turned off, vacuum is no longer generated and the AQR valve opens a large passage to atmosphere so that vacuum is quickly dissipated to release the work object.

The AQR module uses the same cap as the PA5F monitor port option. An M5x0.8 auxiliary vacuum port can be used with the AQR without adding a sensor port option.

Additional Weight: 0.98 oz [27.8 g]

Sensor Port Options
-PA5F: M5 Female Monitor Port
For use with sensors with M5x0.8 male connection threads.

Additional Weight: 0.49 oz [13.9 g]

Shown using AXL1N-18 schematic.

-PA18F: G 1/8 NPSF Monitor Port

For use with sensors with G 1/8 NPSF male connection threads.

Examples:

Please note, the 100 series sensors don't use the same swivel connectors as the 61 / 62 series sensors. As such, these are unable to be removed or rotated without removing the adapter block.

V Series Sensors

61/62 Series Sensors

Manifolds
AX Series Vacuum Pumps can be used as a multi pump module manifold. All of our G $1 / 8$ NPSF bases with integral filters (F18 models) can be used in these manifolds. To order a manifold, first, select your AX Manifold End Plate assembly. Next, decide which AX Manifold Pump Module(s) you'd like to use. Order each module as a separate line item and provide instructions for the order in which you'd like your manifold to be assembled.

See page 6:20 for silencer options details.
Manifold End Plates

	Threads	Number of Modules	Silencer Options ${ }^{1}$
AX-E	N	5	-2ST90
	N NPTF	11 Station	(Blank) None
	G G	22 Stations	-ST 1 STC12M
		3 Stations	-2ST ${ }^{1}$ 2 STC12M
		44 Stations	-ST90 1 STB38M w/ 90° Adapter
		5 5 Stations	-2ST90' 2 STB38M w/ 90° Adapter
		66 Stations	${ }^{1}$ Use two silencers for 5+ stations.
		7 7 Stations	
		88 Stations	
		99 Stations	
		1010 Stations	

Code	Function	NPT	G
1C	Main Air Supply - Common	$1 / 4$ NPTF	G $1 / 4$
1S	Main Air Supply - Separate	G $1 / 8$ NPSF	
2	Vacuum	G $1 / 8$ NPSF	
3	Exhaust - Common	G $1 / 2$ NPSF	

Manifold Vacuum Pump Modules

${ }^{1} A Q R$ option not available on PSB, SB24D, OSB24D pump module styles.
${ }^{2}$ Sensor Port Adapters cannot be used with a Quick Release Option. The AQR option comes standard with an M5x0. 8 auxiliary vacuum port.

Manifold End Plate Silencer Options

Use two silencers when building manifolds with 5+ stations.

Additional Weight: 6.72 oz [190.6 g]

Additional Weight: 4.03 oz [114.4 g]

Additional Weight: 8.06 oz [228.8 g]

Performance Data: M Series

AX-M series pumps are optimized for operation at 50 psi (3.5 bar) air-supply pressure. Performance data at any other air pressure is shown solely for reference and serves only to demonstrate the affect of operation at non-optimal air pressures. Do not expect identical performance to tabulated data.

Graphs and tables show performance data at standard atmospheric conditions of $59^{\circ} \mathrm{F}\left(15^{\circ} \mathrm{C}\right)$ and $29.92 \mathrm{inHg}(760 \mathrm{mmHg})$. Attainable vacuum levels will decrease with an increase in elevation or temperature.

Performance Data: M Series

Performance Data: L Series

AX-L series pumps are optimized for operation at 87 psi (6.0 bar) air-supply pressure. Performance data at any other air pressure is shown solely for reference and serves only to demonstrate the affect of operation at non-optimal air pressures. Do not expect identical performance to tabulated data.

Graphs and tables show performance data at standard atmospheric conditions of $59^{\circ} \mathrm{F}\left(15^{\circ} \mathrm{C}\right)$ and $29.92 \mathrm{inHg}(760 \mathrm{mmHg})$. Attainable vacuum levels will decrease with an increase in elevation or temperature.

Performance Data: L Series

SCFM Scale

Performance Data: Both Series

Vacuum Flow - SCFM

| Model | Air
 Supply
 PSI | Air Cons.
 SCFM | Max
 Vacuum
 inHG | 3 inHG | 6 inHG | 9 inHG | 12 inHG | 15 inHG | 18 inHG | 21 inHG | 24 inHG |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AXM1N | 50 | 1.2 | 25.5 | 1.30 | 0.91 | 0.46 | 0.37 | 0.29 | 0.22 | 0.10 | 0.03 |
| AXM1N | 60 | 1.3 | 25.1 | 1.32 | 1.00 | 0.67 | 0.37 | 0.29 | 0.20 | 0.10 | 0.02 |
| AXM1N | 72 | 1.5 | 24.8 | 1.31 | 1.10 | 0.86 | 0.40 | 0.34 | 0.17 | 0.06 | 0.01 |
| AXM1N | 87 | 1.8 | 21.4 | 1.23 | 1.05 | 0.78 | 0.59 | 0.41 | 0.30 | 0.05 | 0.004 |
| AXLIN | 60 | 1.8 | 21.6 | 2.03 | 1.35 | 1.06 | 0.79 | 0.55 | 0.29 | 0.07 | - |
| AXLIN | 72 | 2.0 | 24.0 | 2.28 | 1.65 | 1.03 | 0.84 | 0.70 | 0.51 | 0.24 | - |
| AXLIN | 87 | 2.3 | 25.1 | 2.57 | 1.95 | 1.30 | 0.84 | 0.70 | 0.51 | 0.33 | 0.13 |

SCFM X $28.32=n 1 / m$

Evacuation Time (sec / 100 in $^{3)}$

| Model | Air
 Supply
 PSI | Air Cons.
 SCFM | Max
 Vacuum
 inHG | 3 inHG | 6 inHG | 9 inHG | 12 inHG | 15 inHG | 18 inHG | 21 inHG | 24 inHG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AXM1N | 50 | 1.2 | 25.5 | 0.43 | 0.50 | 0.57 | 1.82 | 3.1 | 5.3 | 9.3 | 18.3 |
| AXM1N | 60 | 1.3 | 25.1 | 0.43 | 0.47 | 0.91 | 1.67 | 2.9 | 4.9 | 8.7 | 16.9 |
| AXM1N | 72 | 1.5 | 24.8 | 0.20 | 0.48 | 0.89 | 1.57 | 2.7 | 4.6 | 8.3 | 16.1 |
| AXM1N | 87 | 1.8 | 21.4 | 0.15 | 0.50 | 0.94 | 1.62 | 2.7 | 4.5 | 8.0 | 15.7 |
| AXL1N | 60 | 1.8 | 21.6 | 0.12 | 0.31 | 0.61 | 1.07 | 1.8 | 3.1 | 5.5 | - |
| AXL1N | 72 | 2.0 | 24.0 | 0.11 | 0.27 | 0.53 | 0.96 | 1.6 | 2.7 | 4.7 | 9.2 |
| AXL1N | 87 | 2.3 | 25.1 | 0.10 | 0.24 | 0.47 | 0.84 | 1.5 | 2.4 | 4.3 | 8.1 |

$\mathrm{sec} / 100 \mathrm{in}^{3} \times 0.61=\mathrm{sec} / 1$

Chip Series Vacuum Pumps Section 7

FDCD L15A

AA Base

D Base

M Base

A \& B Base

G Base

Z \& ZS Option

C Base

K Base

Options

Basic Information

EDCO Vacuum Chip Pumps were named after electronic circuit chips whose small size and versatility have made modern products more efficient, compact, and affordable. Our low-cost Chip Pumps will do the same thing for your vacuum systems.

Chip Pumps provide the performance you expect from a multi-stage, multi-ejector, air-powered vacuum pump. To increase pump capacity, we simply add another pump module to the assembly stack. Our standard seal and valve elastomer is Nitrile, but we also offer Viton ${ }^{1}$ and EPDM seal materials at a reasonable price. To make our systems easier to design and install, we offer non-return valves and direct mounted electronic sensors. We are always open to suggestions, so contact us if you need an accessory that you don't see in our catalog.

EDCO Chip Pumps are offered with seven standard base configurations and a "Z" option for no base at all. This allows a designer complete freedom to integrate a Chip Pump module into a proprietary assembly. However, it is more common to select an EDCO Vacuum Pump having one of the eleven standard bases that best suits your application needs. EDCO USA will design and manufacture custom bases and pump assemblies for OEMs that have special needs which are not satisfied by our standard products. Fill out the Application Worksheet in the resources available on our website.

We have selected 40% glass-filled Polyphenylene Sulphide (PPS, Ryton) for its extremely high strength, light weight, and chemical resistance. The pump bodies and ejectors are all made of PPS to eliminate chemical compatibility problems caused when different materials are used for parts within the same vacuum pump. A and B bases are also PPS for the same reason. All other bases are made of anodized aluminum for applications requiring maximum ruggedness or a larger capacity vacuum pump. All fasteners used are 303/304 series stainless steel.
${ }^{1}$ Viton is a registered trademark of DuPont Dow.

Venturi Selection

Code	Air Pressure		Max Vacuum
	psi	bar	inHg [-kPa]
$4 M$	60	4	$25.50[86.4]$
5 L	72	5	$22.80[77.2]$
6E	87	6	$25.50[86.4]$
$6 M$	87	6	$22.50[86.4]$

Seal Material Selection

Code	Description
N	Nitrile
E	EPDM
V	Viton 1

${ }^{\prime}$ Viton is a registered trademark of DuPont Dow.

Chemical Compatibility

Medium	Material				
	PPS	Aluminum	Nitrile	EPDM	Viton ${ }^{1}$
Weather, Ozone	E	G	L	E	E
Heat, Aging	E	E	G	G	E
Oil, Petrol	E	L	E	U	E
Hydrolysis	E	E	G	G	G
Acid, Alkali	E	U	G	E	G
Acetone	E	E	U	E	U
Ammonia	G	G	L	E	U
Amyl Alcohol	E	G	G	E	G
Benzene	E	G	U	U	E
Butanol	E	G	G	G	E
Cyclohexane	E	E	G	U	E
Ethanol	E	G	L	E	E
Ethyl Acetate	E	G	U	G	U
Hexane	E	E	E	U	E
Carbone Tetrachloride	E	U	U	U	E
Chlora Benzene	E	E	U	U	E
Chloroform	E	L	U	U	E
Methanol	E	G	E	E	L
Methylene Chloride	E	L	U	G	E
Methyl Ethyl Ketone	E	G	U	E	U
NaOH	E	U	G	E	G
Propanol	E	G	E	E	E
Sulphuric Acid	E	U	L	G	E
Tetrahydrofuran	E	U	U	G	U
Tetrachlorethelene	E	U	U	U	E
Toulene	E	E	U	U	E
Trichlorethane	E	U	U	U	E
Trichlorethylene	E	U	U	U	E
Xylene	E	G	U	U	E
Acetic Acid	E	L	E	E	G

$E=$ Excellent | $G=$ Good | L =Limited | $U=$ Unsuited
${ }^{1}$ Viton is a registered trademark of DuPont Dow.

AA Base
PPS Pump Module w/ Aluminum Base

	Series	Capacity	Seal Material		Non-Return Option			Options
C	6M	10	N		-AA			
	4M	M Series	E	EPDM	(Blank)	None	(Blank)	None
	6M	10	N	Nitrile	R	Non-Return	-PA5F	Port Adapter, M5X0.8
	5L	E \& L Series	V	Viton ${ }^{1}$			-PA18F	Port Adapter, G 1/8 NPSF

${ }^{1}$ Viton is a registered trademark of DuPont Dow.

Weight: 2.36 oz [66.8 g]

Exhaust
3 Places

Thru Hole
2 Places

Code	Function	Ports
1	Air Supply	M5 $\times 0.8$ (10-32 UNF)
2	Vacuum	G $1 / 8$ NPSF

A \& B Bases
PPS Pump Module \& Base

	Series	Capacity		Seal	Non-Return Option			Base	Threads		Options	
C	5L	14	V		-A							
	4M	M Series	E	EPDM	(Blank)	None	-A	A Base	(Blank)	NPSF	(Blank)	None
	6M	10	N	Nitrile	R	Non-Return	-B	B Base	-G	G Threads ${ }^{2}$	-PA5F	Port Adapter, M5X0.8
	5L	20	V	Viton ${ }^{1}$	-PA18F Port Adapter, G 1/8 NPSF							
	6E	E \& L Series										
		14										
		28										

${ }^{1}$ Viton is a registered trademark of DuPont Dow.
${ }^{2}$ Only available on B Base.

Groove fits -014 O-Ring (not supplied)

Exhaust

Ø 0.13 [3.3]
Thru Hole
2 Places

Capacity		A	A - Weight	B - Weight
Moz $[\mathrm{g}]$				
14	10	$0.90[22.9]$	$3.00[85.0]$	$2.88[81.6]$
28	20	$1.20[30.5]$	$3.85[109.1]$	$3.73[105.7]$

| Code | Function | A | B - NPSF | B - G |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Air Supply | G $1 / 8$ NPSF | | |
| 2 | Vacuum | G $1 / 8$ NPSF | $3 / 8$ NPSF | G $3 / 8$ |

C Base
PPS Pump Module w/ Aluminum Base

Capacity		A in [mm]	Weight oz [g]			
M	E \& L					
10	14	1.01 [25.7]	3.73 [105.8]	Code	Function	Ports
20	28	1.31 [33.3]	4.58 [130.0]	1	Air Supply	G 1/8 NPSF
30	42	1.61 [40.9]	5.44 [154.1]	2	Vacuum	3/8 NPSF
40	56	1.91 [48.5]	6.29 [178.2]	3	Exhaust	3/8 NPSF

D Base
PPS Pump Module w/ Aluminum Base

${ }^{1}$ Viton is a registered trademark of DuPont Dow.

Capacity		A	Weight
M	E \& L	in [mm]	oz [g]
10	14	$1.01[25.7]$	$3.58[101.6]$
20	28	$1.31[33.3]$	$4.44[125.7]$
30	42	$1.61[40.9]$	$5.29[149.9]$

Code	Function	NPSF	G
1	Air Supply	G $1 / 8$ NPSF	
2	Vacuum	$3 / 8$ NPSF	G 3/8

G Base
PPS Pump Module w/ Aluminum Base

Series	Capacity	Seal	Non-Return Option	Silencer	Options
C 4 M	20	N			
4M	M Series	E EPDM	(Blank) None	(Blank) None	(Blank) None
6M	20	N Nitrile	R Non-Return	-ST STB38M	-PA5F Port Adapter, M5X0.8
5L	40	\checkmark Viton 1			-PA18F Port Adapter, G 1/8 NPSF
6E	60				
	E \& L Series				
	28				
	56				
	84				

${ }^{1}$ Viton is a registered trademark of DuPont Dow.
${ }^{2}$ Includes a t-style vacuum filter and replacement filter elements (qty 3).

Capacity		A	Weight
M	E \& L	in $[\mathrm{mm}]$	oz [g]
20	28	$1.82[46.2]$	$8.06[228.4]$
30	42	$2.12[53.8]$	$8.91[252.5]$
40	56	$2.42[61.5]$	$9.76[276.6]$
50	70	$2.72[69.1]$	$10.61[300.7]$
60	84	$3.02[76.7]$	$11.46[324.8]$

Code	Function	Ports
1	Air Supply	G $1 / 8$ NPSF
2	Vacuum	$3 / 8$ NPSF
3	Exhaust	$3 / 8$ NPSF

K Base

PPS Pump Module w/ Aluminum Base

${ }^{1}$ Viton is a registered trademark of DuPont Dow.
${ }^{2}$ Includes a t-style vacuum filter and replacement filter elements (qty 3).

Capacity		A	Weight
M	E \& L	in [mm]	oz $[\mathrm{g}]$
20	28	$1.65[41.9]$	$17.14[485.8]$
40	56	$1.95[49.5]$	$18.73[531.0]$
60	84	$2.25[57.2]$	$20.32[576.2]$

Code	Function	Ports
1	Air Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 2$ NPSF
3	Exhaust	$3 / 8$ NPSF

M Base

PPS Pump Module w/ Aluminum Base

${ }^{1}$ Viton is a registered trademark of DuPont Dow.
${ }^{2}$ Includes a t-style vacuum filter and replacement filter elements (qty 3).

Capacity		A	Weight
M	E \& L	in [mm]	oz [g]
10	14	$1.17[29.7]$	$6.09[172.7]$
20	28	$1.47[37.3]$	$6.94[196.9]$

Code	Function	Ports
1	Air Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 8$ NPSF
3	Exhaust	G $1 / 8$ NPSF

Z Option (Zero / No Base)

PPS pump module ready for integration into your custom design.

Weight: 0.86 oz [24.3 g]

Code	Function	Hole \varnothing in $[\mathrm{mm}]$
1	Air Supply	$0.18[4.6]$
2	Vacuum	$0.38[9.7]$
3	Exhaust	$0.38[9.7]$

PA5F Option: M5 Monitor Port

An additional vacuum port allows for vacuum monitoring.

0.14
[3.4]

PA18F Option: G 1/8 NPSF Port

An additional vacuum port allows for mounting a vacuum switch or release check valve directly to the pump.

Performance

All performance data presented is a representation of production pumps but is not a guarantee due to variations in local barometric pressure and of mass produced components.

Performance

Vacuum Flow - SCFM

| Model | Air
 Supply
 PSI | Air
 Consu
 SCFM | Max
 Vacuum
 inHg | 3 inHg | 6 inHg | 9 inHg | 12 inHg | 15 inHg | 18 inHg | 21 inHg | 24 inHg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C5L14 | 72 | 2.0 | 23.6 | 1.6 | 1.0 | 0.83 | 0.64 | 0.45 | 0.35 | 0.09 | - |
| C5L28 | 72 | 4.0 | 23.6 | 3.3 | 2.0 | 1.7 | 1.30 | 0.9 | 0.7 | 0.18 | - |
| C5L42 | 72 | 6.0 | 23.6 | 4.9 | 3.1 | 2.5 | 1.9 | 1.4 | 1.1 | 0.27 | - |
| C5L56 | 72 | 8.0 | 23.6 | 6.6 | 4.1 | 3.3 | 2.6 | 1.8 | 1.4 | 0.36 | - |
| C5L70 | 72 | 10.0 | 23.6 | 8.2 | 5.1 | 4.2 | 3.2 | 2.3 | 1.8 | 0.45 | - |
| C5L84 | 72 | 12.0 | 23.6 | 9.8 | 6.1 | 5.0 | 3.8 | 2.7 | 2.1 | 0.54 | - |
| C6E14 | 87 | 2.3 | 25.6 | 1.8 | 1.0 | 0.78 | 0.64 | 0.5 | 0.35 | 0.18 | 0.03 |
| C6E28 | 87 | 4.6 | 25.6 | 3.7 | 2.1 | 1.6 | 1.30 | 1.0 | 0.7 | 0.36 | 0.06 |
| C6E42 | 87 | 6.9 | 25.6 | 5.5 | 3.1 | 2.3 | 1.9 | 1.5 | 1.1 | 0.54 | 0.09 |
| C6E56 | 87 | 9.2 | 25.6 | 7.4 | 4.1 | 3.1 | 2.6 | 2.0 | 1.4 | 0.72 | 0.12 |
| C6E70 | 87 | 11.5 | 25.6 | 9.2 | 5.2 | 3.9 | 3.2 | 2.5 | 1.8 | 0.9 | 0.15 |
| C6E84 | 87 | 13.8 | 25.6 | 11.0 | 6.2 | 4.7 | 3.8 | 3.0 | 2.1 | 1.1 | 0.18 |
| C4M10 | 55 | 1.6 | 25.5 | 1.1 | 0.65 | 0.53 | 0.40 | 0.32 | 0.22 | 0.14 | 0.05 |
| C4M20 | 55 | 3.2 | 25.5 | 2.2 | 1.3 | 1.1 | 0.80 | 0.64 | 0.44 | 0.28 | 0.11 |
| C4M30 | 55 | 4.8 | 25.5 | 3.3 | 2.0 | 1.6 | 1.2 | 1.0 | 0.66 | 0.42 | 0.33 |
| C4M40 | 55 | 6.4 | 25.5 | 4.4 | 2.6 | 2.1 | 1.6 | 1.3 | 0.88 | 0.56 | 0.44 |
| C4M50 | 55 | 8.0 | 25.5 | 5.5 | 3.3 | 2.7 | 2.0 | 1.6 | 1.1 | 0.70 | 0.27 |
| C4M60 | 55 | 9.6 | 25.5 | 6.6 | 3.9 | 3.2 | 2.4 | 1.9 | 1.3 | 0.84 | 0.66 |
| C6M10 | 87 | 1.6 | 25.5 | 1.8 | 0.72 | 0.44 | 0.35 | 0.31 | 0.2 | 0.2 | 0.06 |
| C6M20 | 87 | 3.2 | 25.5 | 3.5 | 1.4 | 0.88 | 0.7 | 0.62 | 0.4 | 0.4 | 0.12 |
| C6M30 | 87 | 4.8 | 25.5 | 5.2 | 2.2 | 1.3 | 1.0 | 0.93 | 0.6 | 0.6 | 0.18 |
| C6M40 | 87 | 6.4 | 25.5 | 7.0 | 2.9 | 1.8 | 1.4 | 1.2 | 0.80 | 0.8 | 0.24 |
| C6M50 | 87 | 8.0 | 25.5 | 8.8 | 3.6 | 2.2 | 1.8 | 1.6 | 1.0 | 1.0 | 0.3 |
| C6M60 | 87 | 9.6 | 25.5 | 10.5 | 4.3 | 2.6 | 2.1 | 1.9 | 1.2 | 1.2 | 0.36 |

SCFM $\times 28.32=\mathrm{nl} / \mathrm{m}$

Evacuation Time - sec / 100 in 3

	Air	Air	Max	SCFM at Vacuum Level							
Model	Supply PSI	Consum SCFM	Vacuum inHg	3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg
C5L14	72	2.0	23.6	0.14	0.39	0.77	1.4	2.3	3.9	6.8	-
C5L28	72	4.0	23.6	0.07	0.2	0.39	0.68	1.2	1.9	3.4	-
C5L42	72	6.0	23.6	0.05	0.13	0.26	0.45	0.76	1.3	2.3	-
C5L56	72	8.0	23.6	0.04	0.1	0.19	0.34	0.57	0.97	1.7	-
C5L70	72	10.0	23.6	0.03	0.08	0.15	0.27	0.46	0.77	1.4	-
C5L84	72	12.0	23.6	0.02	0.07	0.13	0.23	0.38	0.64	1.1	-
C6E14	87	2.3	25.6	0.13	0.34	0.71	1.3	2.2	3.6	6.3	7.1
C6E28	87	4.6	25.6	0.07	0.17	0.36	0.64	1.1	1.8	3.2	3.6
C6E42	87	6.9	25.6	0.04	0.11	0.24	0.42	0.72	1.2	2.1	2.4
C6E56	87	9.2	25.6	0.03	0.09	0.18	0.32	0.54	0.91	1.6	1.8
C6E70	87	11.5	25.6	0.03	0.07	0.14	0.25	0.43	0.73	1.3	1.4
C6E84	87	13.8	25.6	0.02	0.06	0.12	0.21	0.36	0.61	1.1	1.2
C4M10	55	1.6	25.5	0.16	0.50	1.0	1.9	3.2	5.4	9.3	18.2
C4M20	55	3.2	25.5	0.08	0.25	0.50	1.0	1.6	2.7	4.7	9.1
C4M30	55	4.8	25.5	0.05	0.17	0.33	0.63	1.1	1.8	3.1	6.1
C4M40	55	6.4	25.5	0.04	0.13	0.25	0.48	0.8	1.4	2.3	4.6
C4M50	55	8.0	25.5	0.03	0.1	0.2	0.38	0.64	1.1	1.9	3.6
C4M60	55	9.6	25.5	0.03	0.08	0.17	0.32	0.53	0.9	1.6	3.1
C6M10	87	1.6	25.5	0.12	0.37	0.79	1.5	2.5	4.3	7.5	14.5
C6M20	87	3.2	25.5	0.06	0.19	0.40	0.74	1.3	2.2	3.8	7.3
C6M30	87	4.8	25.5	0.04	0.17	0.26	0.49	0.83	1.4	2.5	4.8
C6M40	87	6.4	25.5	0.03	0.09	0.2	0.37	0.63	1.1	1.9	3.6
C6M50	87	8.0	25.5	0.02	0.07	0.16	0.3	0.5	0.86	1.5	2.9
C6M60	87	9.6	25.5	0.02	0.06	0.13	0.25	0.42	0.72	1.3	2.4

Classic Series Vacum Pumps Section 8

FDCD L15A

Basic

6010 \& 6034

Dual-Base

Control Options

Mini-Classic

Triple-Base

Integrated Filter

Quadruple-Base

Information	3
Basic	4
Control Options	5
Mount Options	9
Surface Mount Base	10
6010 \& 6034 Base	11
Classic Pumps w/ Integrated Filter	13
Mini-Classic Pumps	18
Dual-Base Classic Pumps	19
Triple-Base Classic Pumps	20
Quadruple-Base Classic Pumps	21
Triple / Quadruple Base Options	22
Performance	22

Principles of Operation

Multi-Ejector

Larger capacity vacuum pumps are created by placing identical nozzle sets in a parallel configuration, either in the same body or in a stacking module. Additional vacuum flow capacity is attained but maximum vacuum level is not affected since that is determined by the nozzle series. This method provides a specific repeatable increment of capacity increase that is very handy when sizing a pump for an application since the basic shape of the performance curve doesn't change. Vacuum flow and air consumption is increased in proportion to the number of nozzle sets, and system evacuation time is decreased proportionately.

High-Flow Mode

An air supply to the pump is turned on and high-pressure air flows thru the first nozzle, generating a vacuum flow when it passes into the second nozzle. As air is evacuated from the system, induced air flows into the vacuum port and is drawn into the first stage ejector (gap between first and second nozzles) and combines with the compressed air flow from the first nozzle before passing into the second stage ejector (gap between second and third nozzle). The powerful combined airflow induces a high vacuum flow rate thru the second stage ejector until the increasing vacuum level causes the flap check valve to close. The valve closing point is dependent on nozzle series ($A, E, L, M, M L$, or X) and the operating air pressure. For example at 87 psi the flap valve will close at 11 inHg for an ML-series pump and at 18 inHg for an E-series pump. This closing is evident by the change in slope of the performance curve.

High-Vacuum Mode

After the flap valve closes, induced air continues to be drawn into the first stage ejector and the vacuum level will increase to the maximum level allowed by the nozzle series. At this point the second stage is isolated and is not contributing to evacuation of the system. Some of our competitors offer three and four stage vacuum pumps but these provide very little benefit for industrial systems since a third stage will shut down at 3 inHg and a fourth stage will shut down at 1.5 inHg . EDCO nozzles are optimized to give extra vacuum flow at higher vacuum levels to more-than make up for lower flows from zero to 3 inHg . EDCO evacuation times to 12 inHg or higher will be equal or better than our competition.

Basic Pump

Basic pump controlled via air supply through the pump base inlet port.

Code	Function	NPTF	G
1	Air-Supply	$1 / 4$ NPTF	G 1/4
1 A	Alternate Air-Supply	M5x0.8	
2	Vacuum	$3 / 4$ NPTF	G 3/4
$2 A$	Alternate Vacuum	G 1/8 NPSF	
3	Exhaust	$3 / 4$ NPTF	G 3/4

Capacity	A in $[\mathrm{mm}]$	Weight $\mathrm{lb}[\mathrm{g}]$
$25-100$	$1.47[37.3]$	$1.63[739]$
$125-200$	$2.18[55.4]$	$2.21[1002]$

Pilot Controlled Air-Supply

The pump base contains an integral, pilot-operated, 3-way air valve which controls vacuum on/off via pneumatic pilot signal. When the pilot signal is presented, the vacuum is turned on. When the pilot signal is exhausted, the pump turns off.

Code	Function	NPTF	G
1	Air-Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$3 / 4$ NPTF	G 3/4
2 A	Vacuum - Alternate	G $1 / 8$ NPSF	
3	Exhaust	$3 / 4$ NPTF	G 3/4
PS	Pilot Signal, Air-Supply	G $1 / 8$ NPSF	

Capacity	A in $[\mathrm{mm}]$	Weight Ib $[\mathrm{g}]$
$25-100$	$1.96[49.8]$	$2.81[1275.0]$
$125-200$	$2.67[67.8]$	$3.41[1547.0]$

Pilot Controlled Air-Supply \& Release

The pump base contains two integral, pilot-operated, 3-way air valves which provide full pump control via two externally supplied pneumatic pilot signals. With a constant air-supply to the pump base, one pilot signal controls vacuum on/off while a second pilot signal controls blow-off air to dissipate vacuum for faster system cycle time.

Series	Capacity	Seal Material		Ports		Valve Options	
ML	100		N	-2PSB			
A	25 (40)	N	Nitrile	(Blank)	NPTF Threads	(Blank)	Standard
E	50 (80)	S	Silicone	-G	G Threads	-NR	Non-Return
L	75 (120)	V	Viton ${ }^{2}$				

${ }^{2}$ Viton is a registered trademark of Du Pont Dow Elastomers.
1.23

Capacity	A in $[\mathrm{mm}]$	Weight $\mathrm{lb}[\mathrm{g}]$
$25-100$	$1.96[49.8]$	$2.81[1275.0]$
$125-200$	$2.67[67.8]$	$3.41[1547.0]$

Code	Function	NPTF	G
1	Air-Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$3 / 4$ NPTF	G 3/4
2 A	Vacuum - Alternate	G $1 / 8$ NPSF	
3	Exhaust	$3 / 4$ NPTF	G 3/4
PS	Pilot Signal, Air-Supply	G $1 / 8$ NPSF	
PR	Pilot Signal, Release	G 1/8 NPSF	

Solenoid Controlled Air-Supply

The pump base contains an integral, pilot-operated, 3-way air valve which controls vacuum on/off via a solenoid valve. When the solenoid valve is energized, the vacuum pump turns on. When the solenoid valve is de-energized, the pump turns off.
-2S24D: 24V DC, 2.3 W Solenoid Control Valve (-2OS24D for N.O. Supply)
-2S110A: 20V AC 60 Hz (110V AC 50 Hz), 2.3 W Solenoid Control Valve (-2OS110A for N.O. Supply)

923-2M31: L.E.D. O-50V, 2M
923-2M81: L.E.D. $70-250 \mathrm{~V}, 2 \mathrm{M}$

Capacity	A in $[\mathrm{mm}]$	Weight $\mathrm{lb}[\mathrm{g}]$
$25-100$	$1.96[49.8]$	$2.87[1301.0]$
$125-200$	$2.67[67.8]$	$3.47[1574.0]$

Code	Function	NPTF	G
1	Air-Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$3 / 4$ NPTF	G $3 / 4$
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	
3	Exhaust	$3 / 4$ NPTF	G $3 / 4$

Solenoid Controlled Air-Supply \& Release
The pump base contains two integral, pilot-operated, 3-way air valves which provide full pump control via two solenoid valves. With a constant air-supply to the pump base, one solenoid valve controls vacuum on/off while a second solenoid valve controls blow-off air to dissipate vacuum for faster system cycle time.
-2SB24D: 24V DC, 2.3 W Solenoid Control Valve (-2OSB24D for normally open supply)
-2SB110A: 20V AC $60 \mathrm{~Hz}(110 \mathrm{~V}$ AC 50 Hz), 2.3 W Solenoid Control Valve (-2OS110A for normally open supply)

Mounting Brackets

Stainless steel mounting brackets come in 90° and 180° styles to use in a variety of mounting options. ML-BKT-90 and ML-BKT-180 can be use in side or end orientation on the basic classic pump base and end orientation on pump bases with air-supply or blow-off control options. Dual hole patterns provide attachment to both metric and inch structural framing extrusion t-slots.

Weight: 0.06 Ibs [131.1 g]
Brackets and fastener kits must be ordered separately. Not compatible with 6010, 6034, SM, or SMS bases.

Fastener Kits

Fastener Kit	Description	Contains
ML-M4-E1	End Mount, 25-100 Capacity	M4X8 (2) \& M4X30 (2)
ML-M4-E2	End Mount, 125-200 Capacity	M4X8 (2) \& M4X45 (2)
ML-M4-S1	Side Mount, 25-100 Capacity	M4X50 (2) \& M4 Nut (2)
ML-M4-S2	Side Mount, 125-200 Capacity	M4X70 (2) \& M4 Nut (2)

Surface Mount Base

The SM (surface mount) base includes $1 / 2$ " vacuum ports at three locations and a flat backside for panel mounting. One to three vacuum lines can be ran directly from the pump base. Unused vacuum ports simply need to be plugged. This design makes this pump configuration ideal for robotic end-effectors.

Code	Function	NPT	G
1	Air-Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$3 / 4$ NPTF	G $3 / 4$
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	
3	Exhaust	$1 / 2$ NPTF	G $1 / 2$

Capacity	A in $[\mathrm{mm}]$	Weight lb $[\mathrm{g}]$
$25-100$	$1.97[50.0]$	$2.27[1030.0]$
$125-200$	$2.68[68.1]$	$3.05[1383.0]$

6010 Base

G 1" vacuum and exhaust ports are at opposite ends of the base. The pump is controlled via air-supply through the inlet port. Vacuum gauge, silencer, and full length t-slot are included.

6034 Base
$3 / 4$ " vacuum and exhaust ports are at opposite ends of the base. The pump is controlled via air-supply through the inlet port. Vacuum gauge, silencer, and full length t-slot are included.

Basic Pump w/ Integrated Filter

Basic pump controlled via air supply through the pump base inlet port. This pump incorporates the bowl, gasket, and filter element of our t-style filters directly into the pump base eliminating the necessity of incorporating an external filter into the vacuum system.

(X Series)

ML
${ }^{2}$ Viton is a registered trademark of Du Pont Dow Elastomers.

Replacement Parts:

10503: Bowl
10514: Gasket
PPX35RE3: Filter Element (3 Pack)

Capacity	A in [mm]	Weight lb [g]
$25-50$	$3.24[82.2]$	$3.09[1400.5]$
100	$3.67[93.3]$	$3.36[1524.6]$

Code	Function	NPTF	G
1	Air-Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$3 / 4$ NPTF	G 3/4
2 A	Vacuum - Alternate	G $1 / 8$ NPSF	
3	Exhaust	$3 / 4$ NPTF	G 3/4

Pump w/ Integrated Filter \& Pilot Controlled Air-Supply

The pump base contains an integral, pilot-operated, 3-way air valve which controls vacuum on/off via pneumatic pilot signal. When the pilot signal is presented, the vacuum is turned on. When the pilot signal is exhausted, the pump turns off. This pump incorporates the bowl, gasket, and filter element of our t-style filters directly into the pump base eliminating the necessity of incorporating an external filter into the vacuum system.

ML
${ }^{2}$ Viton is a registered trademark of Du Pont Dow Elastomers.
Replacement Parts:
10503: Bowl
10514: Gasket
PPX35RE3: Filter Element (3 Pack)

Code	Function	NPTF	G
1	Air-Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$3 / 4$ NPTF	G 3/4
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	
3	Exhaust	$3 / 4$ NPTF	G 3/4
PS	Pilot Signal - Air-Supply	G $1 / 8$ NPSF	

Pump w/ Integrated Filter \& Pilot Controlled Air-Supply \& Release
The pump base contains two integral, pilot-operated, 3-way air valves which provide full pump control via two externally supplied pneumatic pilot signals. With a constant air-supply to the pump base, one pilot signal controls vacuum on/off while a second pilot signal controls blow-off air to dissipate vacuum for faster system cycle time. This pump incorporates the bowl, gasket, and filter element of our t-style filters directly into the pump base eliminating the necessity of incorporating an external filter into the vacuum system.

X
${ }^{2}$ Viton is a registered trademark of Du Pont Dow Elastomers.
Replacement Parts:
10503: Bowl
10514: Gasket
PPX35RE3: Filter Element (3 Pack)

Pump w/ Integrated Filter \& Solenoid Controlled Air-Supply

The pump base contains an integral, pilot-operated, 3-way air valve which controls vacuum on/off via a solenoid valve. When the solenoid valve is energized, the vacuum pump turns on. When the solenoid valve is de-energized, the pump turns off. This pump incorporates the bowl, gasket, and filter element of our t-style filters directly into the pump base eliminating the necessity of incorporating an external filter into the vacuum system.

Series	Capacity	Seal		Ports		

${ }^{2}$ Viton is a registered trademark of Du Pont Dow Elastomers.
Order DIN T-9 Molded Cords Separately:
923-2M01: Std. 2M
923-2M31: L.E.D. O-50V, 2 M
923-2M81: L.E.D. $70-250 \mathrm{~V}, 2 \mathrm{M}$
Replacement Parts:
10503: Bowl

Capacity	A in [mm]	Weight lb [g]
$25-50$	$3.24[82.2]$	$3.73[1692.0]$
100	$3.67[93.3]$	$4.00[1812.2]$

Code	Function	NPTF	G
1	Air-Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$3 / 4$ NPTF	G $3 / 4$
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	
3	Exhaust	$3 / 4$ NPTF	G 3/4

Pump w/ Integrated Filter \& Solenoid Controlled Air-Supply \& Release

The pump base contains two integral, pilot-operated, 3-way air valves which provide full pump control via two solenoid valves. With a constant air-supply to the pump base, one solenoid valve controls vacuum on/off while a second solenoid valve controls blow-off air to dissipate vacuum for faster system cycle time. This pump incorporates the bowl, gasket, and filter element of our t-style filters directly into the pump base eliminating the necessity of incorporating an external filter into the vacuum system.

Series	Capacity		Seal		Ports	-IF-SB24D
ML	100	N				
A	25 (40)	N	Nitrile	(Blank)	NPTF Threads	
E	50 (80)	V	Viton	-G	G Threads	
L	100 (160)					

M (X Series)
ML
${ }^{2}$ Viton is a registered trademark of Du Pont Dow Elastomers.

Order DIN T-9 Molded Cords Separately:
923-2M01: Std. 2M
923-2M31: L.E.D. O-50V, 2M
923-2M81: L.E.D. $70-250 \mathrm{~V}, 2 \mathrm{M}$
Replacement Parts:
10503: Bowl
10514: Gasket

Capacity	A in [mm]	A - Weight $\mathrm{lb}[\mathrm{g}]$
$25-50$	$3.24[82.2]$	$3.76[1703.7]$
100	$3.67[93.3]$	$4.02[1823.9]$

Code	Function	NPTF	G
1	Air-Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$3 / 4$ NPTF	G 3/4
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	
3	Exhaust	$3 / 4$ NPTF	G 3/4

0.86 [21.8]

Mini Classic Pumps

Basic pump controlled via air supply through the pump base inlet port.

Code	Function	NPTF	G
1	Air-Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$1 / 2$ NPTF	G $1 / 2$
2 A	Vacuum - Alternate	G $1 / 8$ NPSF	
3	Exhaust	$1 / 2$ NPTF	G $1 / 2$

Capacity	A in $[\mathrm{mm}]$	Weight $\mathrm{Ib}[\mathrm{g}]$
$25-50$	$1.47[37.3]$	$1.25[565.7]$
100	$1.90[48.3]$	$1.53[693.7]$

Dual-Base Classic Pumps

Basic pump controlled via air supply through the pump base inlet port.

${ }^{2}$ Viton is a registered trademark of Du Pont Dow Elastomers.

Triple-Base Classic Pumps

Basic pump controlled via air supply through the pump base inlet port.

Code	Function	NPTF	G
1	Air-Supply	$3 / 4$ NPTF	G 3/4
2	Vacuum	2 NPTF	G 2
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	
3	Exhaust	$3 / 4$ NPTF	G 3/4

Capacity	A in $[\mathrm{mm}]$	Weight $\mathrm{lb}[\mathrm{g}]$
300	$3.71[94.2]$	$12.68[5749.8]$
400	$4.42[112.2]$	$13.31[6039.3]$
500	$4.42[112.2]$	$13.95[6328.8]$
600	$4.42[112.2]$	$14.59[6618.3]$

Quadruple-Base Classic Pumps

Basic pump controlled via air supply through the pump base inlet port.

Series	Capacity	Seal Material	Valve Options		Exhaust Option	
Q ML	400	N				
A	400 (640)	N Nitrile	(Blank)	Standard	(Blank)	Standard
E	500 (800)	Silicone	-NR	Non-Return	-ce	Captured
L	600 (960)	\checkmark Viton ${ }^{2}$				
M	700 (1120)					
ML	800 (1280)					
X	(X Series)					

${ }^{2}$ Viton is a registered trademark of Du Pont Dow Elastomers.

Code	Function	NPTF	G
1	Air-Supply	$3 / 4$ NPTF	G 3/4
2	Vacuum	2 NPTF	G 2
$2 A$	Vacuum - Alternate	G 1/8 NPSF	
3	Exhaust	$3 / 4$ NPTF	G 3/4

Capacity	A in $[\mathrm{mm}]$	Weight $\mathrm{lb}[\mathrm{g}]$
400	$3.71[94.2]$	$16.78[7610.0]$
500	$4.42[112.2]$	$17.42[7899.6]$
600	$4.42[112.2]$	$18.05[8189.1]$
700	$4.42[112.2]$	$18.69[8478.6]$
800	$4.42[112.2]$	$19.33[8768.1]$

Quadruple-Base Classic Pumps

To use the Captured Exhaust Option, use 3.00" (75 mm) inner diamter hose.
Triple Base Captured Exhaust Option

Quadruple Base Captured Exhaust Option

Performance

Series Selection

Code	Description	Max Vacuum inHG [-kPa]	Supply Pressure psi [bar]
A	Ultra-High Flow	$27.0[91.4]$	$87[6]$
E	Ultra-High Flow	$26.7[90.4]$	$87[6]$
L	High Flow	$22.8[77.2]$	$87[6]$
M	Low Pressure	$27.1[91.8]$	$49[3.4]$
ML	Multi-Characteristic	$27.5[93.1]$	$58-87[4-6]$
X	High Vacuum	$28.3[95.8]$	$87[6]$

Seal Material Selection

Code	Description	Working Temperature	Color
N	Nitrile $($ Buna-N $)$	$-4^{\circ} \mathrm{F}$ to $230^{\circ} \mathrm{F}$ $-20^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$	Black
S	Silicone	$-100^{\circ} \mathrm{F}$ to $400^{\circ} \mathrm{F}$	
$-70^{\circ} \mathrm{C}$ to $205^{\circ} \mathrm{C}$			

${ }^{1}$ For operating temperatures above $180^{\circ} \mathrm{F}\left[82.2^{\circ} \mathrm{C}\right]$. The pump will be assembled using high-temperature sealant, metal end plugs, and will be supplied without ehaust silencer and vacuum gauge. Available for basic pump style only.
${ }^{2}$ Viton is a registered trademark of Du Pont Dow Elastomers.

Performance

Vacuum Flow - SCFM

Capacity	25	50	75	100	125	150	175	200	300	400	500	600	700	800	900	1000	1100	1200
Scale	1	2	3	4	5	6	7	8	12	16	20	24	28	32	36	40	44	48

Evacuation Time - Sec / 1,000 in^{3}

Pump Series	Air Supply PSI	Air Consum SCFM	Max Vacuum inHg	Seconds to Evacuate 1,000 in ${ }^{3}$ to Vacuum Level								
				3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg	26 inHg
A	87	6.8	27.1	0.31	0.75	1.4	2.5	4.3	7.4	13.2	25.6	45
E	87	6.8	26.7	0.4	0.99	1.8	3.0	5.09	8.7	15.6	30.6	56
L	87	4.0	22.8	0.44	1.04	1.9	3.6	6.34	10.8	19.3	-	-
M	49	4.3	27.1	0.48	1.18	2.3	4.2	7.36	12.7	22.5	43.7	77
ML	87	4.0	27.5	0.87	1.7	3.3	5.9	10.2	18.4	35.8	64	
X	87	5.4	28.3	0.4	1.0	2.0	3.6	6.4	11.1	19.6	38	67

sec / 1,000 in ${ }^{3} \times 0.61=\mathrm{sec} / 1$
All performance data presented is a representation of production pumps but is not a guarantee due to variations in local barometric pressure and of mass produced components.

Performance (ML Series)

Vacuum Flow - SCFM

Capacity	25	50	75	100	125	150	175	200	300	400	500	600	700	800	900	1000	1100	1200
Scale	1	2	3	4	5	6	7	8	12	16	20	24	28	32	36	40	44	48

Evacuation Time-Sec / 1,000 in^{3}

Air	Air	Max	Seconds to Evacuate 1,000 in ${ }^{3}$ to Vacuum Level								
Supply PSI	Consum SCFM	Vacuum inHg	3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg	26 inHg
60	3.0	23.6	0.39	1.1	2.9	4.3	7.5	12.9	29.3	-	-
72	3.5	26.8	0.36	0.93	1.9	3.8	6.6	11.4	20.2	39.5	70
87	4.0	27.5	0.35	0.87	1.7	3.3	5.9	10.2	18.4	35.8	64

[^1]All performance data presented is a representation of production pumps but is not a guarantee due to variations in local barometric pressure and of mass produced components.

Performance

Vacuum Flow - SCFM

		Air		SCFM at Vacuum Level (inHg)									
Model	Supply PSI	Consum SCFM	$\begin{gathered} \text { Vacuum } \\ \text { inHg } \end{gathered}$	3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg	26 inHg	27 inHg
E25	87	6.8	26.7	6.24	5.44	4.67	3.3	1.98	0.6	0.29	0.11	0.012	-
E50	87	13.6	26.7	12.5	10.9	9.34	6.6	3.96	1.2	0.58	0.22	0.024	-
E75	87	20.4	26.7	18.7	16.3	14.0	9.9	5.94	1.8	0.87	0.33	0.036	-
E100	87	27.2	26.7	25.0	21.8	18.7	13.2	7.92	2.4	1.16	0.44	0.048	-
E125	87	34.0	26.7	31.2	27.2	23.4	16.5	9.9	3.0	1.45	0.55	0.06	-
E150	87	40.8	26.7	37.4	32.6	28.0	19.8	11.9	3.6	1.74	0.66	0.072	-
E175	87	47.6	26.7	43.7	38.1	32.7	23.1	13.9	4.2	2.03	0.77	0.084	-
E200	87	54.4	26.7	49.9	43.5	37.4	26.4	15.8	4.8	2.32	0.88	0.096	-
E300	87	81.6	26.7	74.9	65.3	56.0	39.6	23.8	7.2	3.48	1.32	0.14	-
L25	87	4.0	22.8	5.57	4.63	3.15	1.8	1.37	1.06	0.74	-	-	-
L50	87	8.0	22.8	11.1	9.26	6.30	3.6	2.74	2.12	1.48	-	-	-
L75	87	12.0	22.8	16.7	13.9	9.45	5.4	4.11	3.18	2.22	-	-	-
L100	87	16.0	22.8	22.3	18.5	12.6	7.2	5.48	4.24	2.96	-	-	-
L125	87	20.0	22.8	27.9	23.2	15.8	9.0	6.85	5.3	3.7	-	-	-
L150	87	24.0	22.8	33.4	27.8	18.9	10.8	8.22	6.36	4.44	-	-	-
L175	87	28.0	22.8	39.0	32.4	22.0	12.6	9.59	7.42	5.18	-	-	-
L200	87	32.0	22.8	44.6	37.0	25.2	14.4	11.0	8.48	5.92	-	-	-
L300	87	48.0	22.8	66.8	55.6	37.8	21.6	16.4	12.7	8.88	-	-	-
M25	49	4.3	27.1	5.32	4.05	2.55	1.24	0.9	0.61	0.38	0.15	0.03	-
M50	49	8.6	27.1	10.6	8.1	5.1	2.48	1.8	1.22	0.76	0.3	0.06	-
M75	49	12.9	27.1	16.0	12.2	7.65	3.72	2.7	1.83	1.14	0.45	0.09	-
M100	49	17.2	27.1	21.3	16.2	10.2	4.96	3.6	2.44	1.52	0.6	0.12	-
M125	49	21.5	27.1	26.6	20.3	12.8	6.2	4.5	3.05	1.9	0.75	0.15	-
M150	49	25.8	27.1	31.9	24.3	15.3	7.44	5.4	3.66	2.28	0.9	0.18	-
M175	49	30.1	27.1	37.2	28.4	17.9	8.68	6.3	4.27	2.66	1.05	0.21	-
M200	49	34.4	27.1	42.6	32.4	20.4	9.92	7.2	4.88	3.04	1.2	0.24	-
M300	49	51.6	27.1	63.8	48.6	30.6	14.9	9.72	7.32	4.56	1.8	0.36	-
ML25	87	4.0	27.5	7.17	5.12	2.91	1.27	0.84	0.51	0.34	0.16	0.06	0.017
ML50	87	8.0	27.5	14.3	10.2	5.82	2.54	1.68	1.02	0.68	0.32	0.12	0.034
ML75	87	12.0	27.5	21.5	15.4	8.73	3.81	2.52	1.53	1.02	0.48	0.18	0.051
ML100	87	16.0	27.5	28.7	20.5	11.6	5.08	3.36	2.04	1.36	0.64	0.24	0.068
ML125	87	20.0	27.5	35.9	25.6	14.6	6.35	4.2	2.55	1.7	0.8	0.3	0.085
ML150	87	24.0	27.5	43.0	30.7	17.5	7.62	5.04	3.06	2.04	0.96	0.36	0.102
ML175	87	28.0	27.5	50.2	35.8	20.4	8.89	5.88	3.57	2.38	1.12	0.42	0.119
ML200	87	32.0	27.5	57.4	41.0	23.3	10.2	6.72	4.08	2.72	1.28	0.48	0.136
ML300	87	48.0	27.5	86.0	61.4	34.9	15.2	10.1	6.12	4.08	1.92	0.72	0.2
X40	87	5.4	28.3	6.33	4.89	2.73	1.4	0.9	0.61	0.5	0.33	0.15	0.067
X80	87	10.8	28.3	12.7	9.78	5.46	2.8	1.8	1.22	1.0	0.66	0.3	0.134
X120	87	16.2	28.3	19.0	14.7	8.19	4.2	2.7	1.83	1.5	0.99	0.45	0.201
X160	87	21.6	28.3	25.3	19.6	10.9	5.6	3.6	2.44	2.0	1.32	0.6	0.268
$\times 200$	87	27.0	28.3	31.7	24.5	13.7	7.0	4.5	3.05	2.5	1.65	0.75	0.335
$\times 240$	87	32.4	28.3	38.0	29.3	16.4	8.4	5.4	3.66	3.0	1.98	0.9	0.402
X280	87	37.8	28.3	44.3	34.2	19.1	9.8	6.3	4.27	3.5	2.31	1.05	0.469
X320	87	43.2	28.3	50.6	39.1	21.8	11.2	7.2	4.88	4.0	2.64	1.2	0.536
X480	87	64.8	28.3	76	58.7	32.8	16.8	10.8	7.32	6.0	3.96	1.8	0.8

SCFM $\times 28.32=\mathrm{nl} / \mathrm{m}$

Performance

Vacuum Flow - SCFM

				SCFM at Vacuum Level (inHg)									
Model	Supply PSI	$\begin{gathered} \text { Consum } \\ \text { SCFM } \end{gathered}$	$\begin{gathered} \text { Vacuum } \\ \text { inHg } \\ \hline \end{gathered}$	3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg	26 inHg	27 inHg
E400	87	109	26.7	99.8	87	74.7	52.8	31.7	9.6	4.64	1.76	0.19	-
E500	87	136	26.7	125	109	93.4	66	39.6	12	5.8	2.2	0.24	-
E600	87	163	26.7	150	131	112	79.2	47.5	14.4	6.96	2.6	0.29	-
E700	87	190	26.7	175	152	131	92.4	55.4	16.8	8.12	3.08	0.34	-
E800	87	218	26.7	200	174	149	106	63.4	19.2	9.28	3.52	0.38	-
E900	87	245	26.7	225	196	168	119	71.3	21.6	10.4	3.96	0.43	-
E1000	87	272	26.7	250	218	187	132	79.2	24	11.6	4.4	0.48	-
E1100	87	299	26.7	275	240	205	145	87.1	26.4	12.8	4.84	0.53	-
E1200	87	326	26.7	300	262	224	158	95	28.8	13.9	5.3	0.58	-
L400	87	64	22.8	89.1	74.1	50.4	28.8	21.9	17	11.8	-	-	-
L500	87	80	22.8	111	92.6	63.	36	27.4	21.2	14.8	-	-	-
L600	87	96	22.8	134	111	75.6	43.2	32.9	25.4	17.8	-	-	-
L700	87	112	22.8	156	130	88.2	50.4	38.4	29.7	20.7	-	-	-
L800	87	128	22.8	178	148	101	57.6	43.8	33.9	23.7	-	-	-
L900	87	144	22.8	201	167	113	64.8	49.3	38.2	26.6	-	-	-
L1000	87	160	22.8	223	185	126	72	54.8	42.4	29.6	-	-	-
L1100	87	176	22.8	245	204	139	79.2	60.3	46.6	32.6	-	-	-
L1200	87	192	22.8	267	222	151	86.4	65.8	50.9	35.5	-	-	-
M400	49	68.8	27.1	85.1	64.8	40.8	19.8	14.4	9.76	6.08	2.4	0.48	-
M500	49	86	27.1	106	81	51	24.8	18	12.2	7.6	3	0.6	-
M600	49	103	27.1	128	97.2	61.2	29.8	21.6	14.6	9.12	3.6	0.72	-
M700	49	120	27.1	149	113	71.4	34.7	25.2	17.1	10.6	4.2	0.84	-
M800	49	138	27.1	170	130	81.6	39.7	28.8	19.5	12.2	4.8	0.96	-
M900	49	155	27.1	192	146	91.8	44.6	32.4	22.0	13.7	5.4	1.08	-
M1000	49	172	27.1	213	162	102	49.6	36	24.4	15.2	6	1.2	-
M1100	49	189	27.1	234	178	112	54.6	39.6	26.8	16.7	6.6	1.32	-
M1200	49	206	27.1	255	194	122	59.5	43.2	29.3	18.2	7.2	1.44	-
ML400	87	64	27.5	114	81.9	46.6	20.3	13.4	8.16	5.44	2.56	0.96	0.27
ML500	87	80	27.5	143	102	58.2	25.4	16.8	10.2	6.8	3.2	1.2	0.34
ML600	87	96	27.5	172	123	69.8	30.5	20.2	12.2	8.2	3.84	1.44	0.41
ML700	87	112	27.5	201	143	81.5	35.6	23.5	14.3	9.5	4.48	1.68	0.48
ML800	87	128	27.5	229	164	93.1	40.6	26.9	16.3	10.9	5.12	1.92	0.54
ML900	87	144	27.5	258	184	105	45.72	30.2	18.4	12.2	5.76	2.16	0.61
ML1000	87	160	27.5	287	205	116	50.8	33.6	20.4	13.6	6.4	2.4	0.68
ML1100	87	176	27.5	315	225	128	55.9	37	22.4	15	7.04	2.64	0.75
ML1200	87	192	27.5	344	246	140	61	40.3	24.5	16.3	7.68	2.88	0.82
X640	87	86.4	28.3	101	78.2	43.7	22.4	14.4	9.76	8	5.3	2.4	1.07
X800	87	108	28.3	127	97.8	54.6	28	18	12.2	10	6.6	3.0	1.34
X960	87	130	28.3	152	117	65.5	33.6	21.6	14.6	12	7.92	3.6	1.61
X1120	87	151	28.3	177	137	76.4	39.2	25.2	17.1	14	9.24	4.2	1.88
X1280	87	173	28.3	203	156	87.4	44.8	28.8	19.5	16	10.6	4.8	2.14
X1440	87	194	28.3	228	176	98.3	50.4	32.4	22	18	11.9	5.4	2.41
X1600	87	216	28.3	253	196	109	56	36	24.4	20	13.2	6.0	2.68
X1760	87	238	28.3	279	215	120	61.6	39.6	26.8	22	14.5	6.6	2.95
X1920	87	259	28.3	304	235	131	67.2	43.2	29.3	24	15.8	7.2	3.22

Performance

Evacuation Time - Sec / ft ${ }^{3}$

	Air	Air	Max	Seconds to Evacuate 1 cu ft to Vacuum Level									
Model	Supply PSI	Consum SCFM	Vacuum inHg	3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg	26 inHg	27 inHg
E25	87	6.8	26.7	0.7	1.7	3.1	5.23	8.8	15.0	27.0	52.8	93.7	-
E50	87	13.6	26.7	0.35	0.85	1.55	2.62	4.4	7.5	13.5	26.4	46.9	-
E75	87	20.4	26.7	0.23	0.57	1.03	1.74	2.93	5.0	9.0	17.6	31.2	-
E100	87	27.2	26.7	0.18	0.43	0.79	1.31	2.2	3.75	6.75	13.2	23.4	-
E125	87	34.0	26.7	0.14	0.34	0.62	1.05	1.76	3.0	5.4	10.6	18.7	-
E150	87	40.8	26.7	0.12	0.28	0.52	0.87	1.47	2.5	4.5	8.8	15.6	-
E175	87	47.6	26.7	0.1	0.24	0.44	0.75	1.26	2.14	3.86	7.54	13.4	-
E200	87	54.4	26.7	0.088	0.21	0.39	0.65	1.1	1.88	3.38	6.6	11.7	-
E300	87	81.6	26.7	0.058	0.14	0.26	0.44	0.73	1.25	2.25	4.4	7.81	-
L25	87	4.0	22.8	0.8	1.9	3.7	6.6	12.3	19.0	33.2	-	-	-
L50	87	8.0	22.8	0.4	0.95	1.85	3.3	6.15	9.5	16.6	-	-	-
L75	87	12.0	22.8	0.27	0.63	1.23	2.2	4.1	6.3	11.1	-	-	-
L100	87	16.0	22.8	0.2	0.48	0.93	1.65	3.08	4.75	8.3	-	-	-
L125	87	20.0	22.8	0.16	0.38	0.74	1.32	2.46	3.8	6.64	-	-	-
L150	87	24.0	22.8	0.13	0.32	0.62	1.1	2.05	3.17	5.53	-	-	-
L175	87	28.0	22.8	0.11	0.27	0.53	0.94	1.76	2.71	4.74	-	-	-
L200	87	32.0	22.8	0.1	0.24	0.46	0.83	1.54	2.38	4.15	-	-	-
L300	87	48.0	22.8	0.07	0.16	0.31	0.55	1.03	1.58	2.77	-	-	-
M25	49	4.3	27.1	0.83	2.03	3.96	7.23	12.7	21.9	38.8	75.4	134	-
M50	49	8.6	27.1	0.42	1.02	1.98	3.62	6.35	11.0	19.4	37.7	67.0	-
M75	49	12.9	27.1	0.28	0.68	1.32	2.41	4.23	7.3	12.9	25.1	44.7	-
M100	49	17.2	27.1	0.21	0.51	0.99	1.81	3.18	5.48	9.7	18.9	33.5	-
M125	49	21.5	27.1	0.17	0.41	0.79	1.45	2.54	4.38	7.76	15.1	26.8	-
M150	49	25.8	27.1	0.14	0.34	0.66	1.21	2.12	3.65	6.47	12.7	22.3	-
M175	49	30.1	27.1	0.12	0.29	0.57	1.03	1.81	3.13	5.54	10.8	19.1	-
M200	49	34.4	27.1	0.1	0.25	0.5	0.9	1.59	2.74	4.85	9.43	16.8	-
M300	49	51.6	27.1	0.069	0.17	0.33	0.6	1.06	1.83	3.23	6.28	11.2	-
ML25	87	4.0	27.5	0.6	1.51	3.04	5.7	10.2	17.7	31.8	61.8	110	159
ML50	87	8.0	27.5	0.3	0.76	1.52	2.85	5.1	8.85	15.9	31.0	55.0	79.5
ML75	87	12.0	27.5	0.2	0.5	1.01	1.9	3.39	5.9	10.6	20.6	36.7	53.0
ML100	87	16.0	27.5	0.15	0.38	0.76	1.43	2.54	4.43	7.95	15.5	27.5	39.8
ML125	87	20.0	27.5	0.12	0.3	0.61	1.14	2.03	3.54	6.36	12.4	22.0	31.8
ML150	87	24.0	27.5	0.1	0.25	0.51	0.95	1.69	2.95	5.3	10.3	18.3	26.5
ML175	87	28.0	27.5	0.086	0.22	0.43	0.81	1.45	2.53	4.54	8.84	15.7	22.7
ML200	87	32.0	27.5	0.075	0.19	0.38	0.71	1.27	2.21	3.98	7.74	13.8	19.9
ML300	87	48.0	27.5	0.05	0.13	0.25	0.48	0.85	1.48	2.65	5.16	9.17	13.3
X40	87	5.4	28.3	0.69	1.71	3.38	6.21	11.0	19.1	33.9	65.6	116	167
X80	87	10.8	28.3	0.35	0.86	1.69	3.11	5.5	9.6	17.0	32.8	58.0	83.5
X120	87	16.2	28.3	0.23	0.57	1.13	2.07	3.67	6.37	11.3	21.9	38.7	55.7
X160	87	21.6	28.3	0.17	0.43	0.85	1.55	2.75	4.8	8.48	16.4	29.0	41.8
$\times 200$	87	27.0	28.3	0.14	0.34	0.68	1.24	2.2	3.8	6.78	13.4	23.2	33.4
$\times 240$	87	32.4	28.3	0.12	0.29	0.56	1.04	1.83	3.18	5.65	10.9	19.3	27.8
$\times 280$	87	37.8	28.3	0.1	0.24	0.48	0.89	1.57	2.73	4.84	9.37	16.6	23.9
X320	87	43.2	28.3	0.086	0.21	0.42	0.78	1.38	2.39	4.24	8.2	14.5	20.9
X480	87	64.8	28.3	0.058	0.14	0.28	0.52	0.92	1.59	2.83	5.47	9.6	13.9

Performance

Evacuation Time - Sec / ft ${ }^{3}$

	Air	Air		Seconds to Evacuate 1 cu ft to Vacuum Level									
Model	Supply PSI	$\begin{gathered} \text { Consum } \\ \text { SCFM } \end{gathered}$	$\begin{gathered} \text { Vacuum } \\ \text { inHg } \\ \hline \end{gathered}$	3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg	26 inHg	27 inHg
E400	87	109	26.7	0.044	0.11	0.19	0.33	0.55	0.94	1.69	3.3	5.86	-
E500	87	136	26.7	0.035	0.085	0.16	0.26	0.44	0.75	1.35	2.64	4.69	-
E600	87	163	26.7	0.029	0.071	0.13	0.22	0.37	0.63	1.13	2.2	3.9	-
E700	87	190	26.7	0.025	0.061	0.11	0.19	0.31	0.54	0.96	1.89	3.35	-
E800	87	218	26.7	0.022	0.053	0.097	0.16	0.28	0.47	0.84	1.65	2.93	-
E900	87	245	26.7	0.019	0.047	0.086	0.15	0.24	0.42	0.75	1.47	2.6	-
E1000	87	272	26.7	0.018	0.043	0.078	0.13	0.22	0.38	0.68	1.32	2.34	-
E1100	87	299	26.7	0.016	0.039	0.07	0.12	0.2	0.34	0.61	1.2	2.1	-
E1200	87	326	26.7	0.015	0.035	0.065	0.11	0.18	0.31	0.56	1.1	2.0	-
L400	87	64	22.8	0.05	0.12	0.23	0.41	0.77	1.19	2.08	-	-	-
L500	87	80	22.8	0.04	0.1	0.19	0.33	0.62	0.95	1.66	-	-	-
L600	87	96	22.8	0.03	0.08	0.15	0.28	0.51	0.79	1.38	-	-	-
L700	87	112	22.8	0.029	0.07	0.13	0.24	0.44	0.68	1.19	-	-	-
L800	87	128	22.8	0.025	0.06	0.12	0.21	0.38	0.59	1.04	-	-	-
L900	87	144	22.8	0.022	0.05	0.1	0.18	0.34	0.53	0.92	-	-	-
L1000	87	160	22.8	0.02	0.048	0.09	0.17	0.31	0.48	0.83	-	-	-
L1100	87	176	22.8	0.018	0.043	0.08	0.15	0.28	0.43	0.75	-	-	-
L1200	87	192	22.8	0.017	0.04	0.077	0.14	0.26	0.40	0.69	-	-	-
M400	49	68.8	27.1	0.052	0.13	0.25	0.45	0.79	1.37	2.43	4.71	8.38	-
M500	49	86	27.1	0.042	0.1	0.2	0.36	0.64	1.1	1.94	3.77	6.7	-
M600	49	103	27.1	0.035	0.085	0.17	0.3	0.53	0.91	1.62	3.14	5.58	-
M700	49	120	27.1	0.03	0.073	0.14	0.26	0.45	0.78	1.39	2.69	4.79	-
M800	49	138	27.1	0.026	0.063	0.12	0.23	0.39	0.68	1.21	2.35	4.19	-
M900	49	155	27.1	0.023	0.056	0.11	0.2	0.35	0.61	1.08	2.09	3.72	-
M1000	49	172	27.1	0.021	0.051	0.1	0.18	0.32	0.55	0.97	1.89	3.35	-
M1100	49	189	27.1	0.019	0.046	0.09	0.16	0.29	0.5	0.88	1.71	3.05	-
M1200	49	206	27.1	0.017	0.042	0.83	0.15	0.26	0.46	0.81	1.57	2.79	-
ML400	87	34	27.5	0.038	0.094	0.19	0.36	0.64	1.12	1.99	3.87	6.88	9.94
ML500	87	80	27.5	0.03	0.076	0.15	0.29	0.51	0.89	1.59	3.1	5.5	7.95
ML600	87	96	27.5	0.025	0.063	0.13	0.24	0.42	0.74	1.33	2.58	4.58	6.63
ML700	87	112	27.5	0.021	0.054	0.11	0.2	0.36	0.63	1.14	2.21	3.93	5.68
ML800	87	128	27.5	0.019	0.047	0.095	0.18	0.32	0.55	0.99	1.93	3.44	4.97
ML900	87	144	27.5	0.017	0.042	0.84	0.16	0.28	0.49	0.88	1.72	3.06	4.42
ML1000	87	160	27.5	0.015	0.038	0.76	0.14	0.26	0.44	0.8	1.55	2.75	3.98
ML1100	87	176	27.5	0.014	0.034	0.069	0.13	0.23	0.4	0.72	1.41	2.5	3.61
ML1200	87	192	27.5	0.013	0.031	0.063	0.12	0.21	0.37	0.66	1.3	2.29	3.31
X640	87	86.4	28.3	0.043	0.11	0.21	0.39	0.69	1.19	2.12	4.1	7.25	10.4
X800	87	108	28.3	0.035	0.086	0.17	0.31	0.55	0.96	1.7	3.28	5.8	8.35
X960	87	130	28.3	0.029	0.071	0.14	0.26	0.46	0.8	1.41	2.73	4.83	6.6
X1120	87	151	28.3	0.025	0.061	0.12	0.22	0.39	0.68	1.21	2.34	4.14	5.96
X1280	87	173	28.3	0.022	0.053	0.11	0.19	0.34	0.6	1.06	2.05	3.63	5.22
X1440	87	194	28.3	0.019	0.048	0.094	0.17	0.31	0.53	0.94	1.82	3.22	4.64
X1600	87	216	28.3	0.017	0.043	0.085	0.16	0.28	0.48	0.85	1.64	2.9	4.18
X1760	87	238	28.3	0.016	0.039	0.077	0.14	0.25	0.43	0.77	1.49	2.64	3.8
X1920	87	259	28.3	0.014	0.036	0.07	0.13	0.23	0.4	0.71	1.37	2.42	3.48

VG \& VQ Series Vacuum Pumps Section 9

FDPD LLSA

VG Pumps
(Interchange w/ Gast VG-Series)

VQ Pumps
(Interchange w/ Vac-Cube 60-240 Series

Basic Information

EDCO VG and VQ series vacuum pumps have different bodies to make them directly interchangeable with competitor pumps but utilize the same ejetor nozzles. Performance is the same regardless of which body style you choose. These multi-stage vacuum pumps are designed as direct physical replacements for competitive brand pumps and consistently provide equal or better performance. Customers who were previously limited to a sole source for pumps of this style will now have the option of using higher-quality, all-metal EDCO pumps.

VG and VQ series multi-stage pumps are designed as a drop-in interchange for similarly shaped, competitor pumps, but the similarity ends there. Our all-metal pumps feature externally removable, one-piece valves and one-piece, fully machined aluminum bodies to eliminate loose parts and are manufactured in-house on precision, CNC machines to the highest quality standards.

EDCO pumps produce consistently higher performance because of our precision-machined brass nozzles and one-piece valve with over three times the flow area of competitive designs which provides improved vacuum-flow and increased ability to pass ingested debris. EDCO quality control inspectors individually test each and every product before shipment to assure that catalog specifications are met.

An option exclusive to EDCO is an integral solenoid control valve to control on/off which reduces plumbing complexity, fitting costs, and labor as well as increases system reliability by elminating potential leak points. The solenoid valve is shipped assembled to the pump in the normally-closed (not-passing) mode but can be easily changed to normally-open (passing) by simply inverting the valve whenever the application requires it.

Instead of gang-mounting multiple VG or VQ series pumps to a manifold to obtain a higher flow capacity pump, EDCO offers larger, multi-stage pumps in the classic series (3/4" ports) or dual-base classic series (1-1/2" ports) styles that are much more compact and easier to maintain.

VG Pumps

	Capacity	Ports		Solenoid Option		Solenoid Position ${ }^{1}$	
VG- 065							
	065	(Blank)	NPTF	(Blank)	None	(Blank)	None
	075	-G	G Threads	-12V	12 Volt DC	-L	Left Side
	130			-24V	24 Volt DC	-R	Right Side
140							
260							

${ }^{1}$ When selecting the solenoid option, you must pick a solenoid voltage. Solenoid will be shipped in the normally closed position.

VQ Pumps

	Capacity	Ports		Solenoid Option		Solenoid Position ${ }^{1}$	
VQ- 60							
	60	(Blank)	NPTF	(Blank)	None	(Blank)	n/a
	60L	-G	G Threads	-12V	12 Volt DC	-L	Left Side
	120			-24V	24 Volt DC	-R	Right Side
120L							
180							
180L							
240							

Weight: $1.35 \mathrm{lb}[612.3 \mathrm{~g}]$
${ }^{1}$ When selecting the solenoid option, you must pick a solenoid voltage. Solenoid will be shipped in the normally closed position.

Code	Function	NPTF	G
1	Air Supply	G $1 / 8$ NPSF	
2	Vacuum - Main	$1 / 2$ NPTF	G $1 / 2$
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	
3	Exhaust	G $1 / 2$ NPSF	

Solenoid Options

Order DIN T-1 Molded Cords Separately:
163-2M31: 2M Cord w/ Varistor \& LED, 12-24 V DC

Code	Function	NPTF	G
1	Air Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum - Main	$1 / 2$ NPTF	G $1 / 2$

Examples

These additional options are shown for demonstration purposes only.
Please order any adittional items needed separately.

Flip solenoid 180° for normally open mode.

Performance Data

Vacuum Flow - SCFM

Model		Air	Air	Max	SCFM at Vacuum Level							
		$\begin{gathered} \text { Supply } \\ \text { PSI } \end{gathered}$	$\begin{aligned} & \text { Consu } \\ & \text { SCFM } \end{aligned}$	Vacuum inHg	3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg
VG-065	VQ-60	68	3.3	25.5	6.3	3.8	1.7	1.4	1.0	0.7	0.4	0.15
VG-130	VQ-120	68	5.6	27.5	7.6	5.3	3.1	1.6	1.3	1.0	0.6	0.3
-	VQ-180	68	5.6	27.5	7.6	5.3	3.1	1.6	1.3	1.0	0.6	0.3
VG-260	VQ-240	68	7.3	22.7	8.5	6.0	4.0	3.1	2.5	1.3	0.4	-

SCFM $\times 28.32=\mathrm{nl} / \mathrm{m}$
Evacuation Time (sec / $100 \mathrm{in}^{3)}$

Model		Air	Air	Max	Seconds to Evacuate $1 \mathrm{ft}^{3}$ to Vacuum Level (inHg)							
		Supply PSI	Consu SCFM	Vacuum inHg	3 sec	6 sec	9 sec	12 sec	15 sec	18 sec	21 sec	24 sec
VG-065	VQ-60	68	3.3	25.5	0.65	2.4	3.7	6.9	12.1	20.8	37	46
VG-130	VQ-120	68	5.6	27.5	0.55	1.4	2.9	5.3	9.3	16	28	35
-	VQ-180	68	5.6	27.5	0.55	1.4	2.9	5.3	9.3	16	28	35
VG-260	VQ-240	68	7.3	22.7	0.63	1.3	2.5	4.5	7.6	12.8	13.2	-

$\mathrm{sec} / \mathrm{ft}^{3} \times 35.32=\mathrm{sec} / \mathrm{m}^{3}$

All performance data presented is a representation of production pumps but is not a guarantee due to variations in local barometric pressure and of mass produced components.

Performance Data

Vacuum Flow - SCFM

Model		Air	Air	Max	SCFM at Vacuum Level							
		Supply PSI	Consu SCFM	Vacuum inHg	3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg
VG-075	VQ-60L	87	4.0	27.5	7.2	5.2	2.7	1.3	0.9	0.6	0.3	0.14
VG-140	VQ-120L	87	6.9	27.0	8.1	6.8	5.1	3.3	1.3	0.9	0.5	0.3
-	VQ-180L	87	8.8	25.5	10.0	7.6	5.4	3.1	2.4	1.6	1.2	0.5

Evacuation Time (sec / $100 \mathrm{in}^{3)}$

Model		Air	Air	Max	Seconds to Evacuate $1 \mathrm{ft}^{3}$ to Vacuum Level (inHg)							
		Supply PSI	Consu SCFM	Vacuum inHg	3 sec	6 sec	9 sec	12 sec	15 sec	18 sec	21 sec	24 sec
VG-075	VQ-60L	87	4.0	27.5	0.6	1.5	3.0	5.7	10.2	17.7	32	62
VG-140	VQ-120L	87	6.9	27.0	0.53	1.3	2.5	4.3	7.4	12.8	23	44
-	VQ-180L	87	8.8	25.5	0.42	1.1	2.9	3.7	6.4	10.9	19.2	24

ER Series Vacuum Pumps Section 10

FDINLLSA

2010 Micro-Pump

Inline, Multi-Venturi

Integrated Filter

T18F Body

Vacuum Bar

Manual Valve

Dual ER Pump

2010 Series ER Micro Pumps

The ER2010 micro-pump has an anodized alumin body available in two styles. The M4 style micro-pump has $4 \mathrm{~mm}(5 / 32)$ push-in tube connectors for the air-supply and two vacuum ports and a third, M5 (10-32) female vacuum port. The 5F style micro-pump has M5 (10-32) female ports for air-supply and three vacuum ports.

T18F Body ER Pumps

The T18F base places high performance ER pumps in a compact traditional tee-style body with through holes for mounting and a threaded exhaust port for an optional silencer. The one-piece, anodized aluminum, tee-style body is ideal for small systems or one-pump-per-suction-cup applications. The T18F base has G1/8 NPSF air supply and vacuum ports with a G1/4 exhaust port.

Weight: $1.44 \mathrm{oz}[40.8 \mathrm{~g}]$

Code	Function	Port
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 8$ NPSF
3	Exhaust	G $1 / 4$

Inline ER Pumps

Compact, high-performance inline pumps can be conveniently located near the point of vacuum usage. Ideal for small systems or one pump-per-suction-cup applications. We offer three body styles that allow you to choose the vacuum and airsupply threads that best suit your application.

Venturi Series	Air Consumption $@ 72$ psi [5 bar]	Venturi Diameter	IP Series Replacement
ER05	0.51 SCFM [14.4 NI/m]	0.5 mm	-
ER07	0.66 SCFM [18.7 NI/m]	0.7 mm	IP6M-5
ER09	1.40 SCFM [39.6 NI/m]	0.9 mm	IP6M-10
ER10	1.80 SCFM [51.0 NI/m]	1.0 mm	-
ER08L	1.20 SCFM $[34.0 \mathrm{NI} / \mathrm{m}]$	0.8 mm	-
ER10L	1.90 SCFM $[53.8 \mathrm{NI} / \mathrm{m}]$	1.0 mm	-

Code	Function	-18F	-18M	-G14F18F	
1	Air-Supply	G 1/8 NPSF Female / M16X1.0 Male	G 1/4 Female		
2	Vacuum	G 1/8 NPSF Female	G 1/8 NPSF Male	G 1/8 NPSF Female	
3	Exhaust				

Multi-Venturi Inline ER Pumps
Compact, high-performance inline pumps can be conveniently located near the point of vacuum usage. Ideal for small systems or one pump-per-suction-cup applications.

Weight: 0.98 oz [27.7 g]

Quadruple Venturi

Weight: 1.38 oz [39.2 g]

Venturi Series	Air Consumption $@ 72$ psi [5 bar]	Venturi Diameter	IP Series Replacement
ER09X2	2.80 SCFM [79.0 NI/m]	1.2 mm	IP6M-20
ER10X2 ${ }^{1}$	3.80 SCFM $[108.0 \mathrm{NI} / \mathrm{m}]$	1.4 mm	-
ER08LX2 1	2.40 SCFM [68.0 NI/m]	1.1 mm	IP6M-20
ER10LX2 ${ }^{1}$	3.60 SCFM $[102.0 \mathrm{NI} / \mathrm{m}]$	1.4 mm	-
ER09X4	5.60 SCFM $[158.0 \mathrm{NI} / \mathrm{m}]$	1.8 mm	IP6M-30
ER10X4 ${ }^{1}$	7.20 SCFM $[362.0 \mathrm{NI} / \mathrm{m}]$	2.0 mm	-
ER08LX4 ${ }^{1}$	4.80 SCFM $[136.0 \mathrm{NI} / \mathrm{m}]$	1.6 mm	-
ER10LX4 ${ }^{1}$	7.60 SCFM $[215.0 \mathrm{NI} / \mathrm{m}]$	2.0 mm	-

'May require -18F fitting plus 1/8" nipple for clearance to mount the cup.

Code	Function	Port
1	Air-Supply	G $1 / 8$ NPSF Female / M16X1.0 Male
2	Vacuum	G 1/8 NPSF Female
3	Exhaust	-

ER Series Vacuum Bars

Vacuum bars eliminate the clutter and plumbing complexity of small vacuum systems by incorporating multiple vacuum pumps that have common air supply and common exhaust ports within the bar manifold. Vacuum lines can be routed from the pumps directly to individual suction cups.

Even though all of the vacuum pumps are operated by one air-supply, the pump vacuum ports are independent of one another so it doesn't matter if some vacuum lines are open to atmosphere due to missing work pieces. Vacuum loss in one line doesn't affect performance of the other vacuum pumps.

Integral polyethylene filter elements are easily serviced by removing
 a knurled retainer. The filters protect two ports per vacuum pump so either port can be used for a vacuum outlet, and the other for a vacuum switch.

Stations	W in $[\mathrm{mm}]$	Weight lbs [g]
2	$1.56[39.6]$	$0.36[162.0]$
4	$2.44[62.0]$	$0.56[255.0]$
6	$3.32[84.2]$	$0.77[349.0]$
8	$4.20[106.7]$	$0.97[442.0]$

Refer to ER performance graph. Use the X1 values.

Code	Function	Port
1	Air-Supply	G 1/8 NPSF
2	Vacuum	M5x0.8 (10-32 UNF)
3	Exhaust	G $1 / 4$

Replacement Filter: RE7X32

T12F Base ER Pumps

A T-base allows either one, two, or three ER venturis to be internally connected in parallel to obtain a greater combined vacuum flow rate. For total vacuum flow, read the vacuum flow rate at the desired vacuum level from the ER performance graph then multiply by the number of venturis installed in the T-Base. Normally, only the larger ER venturis would be selected for this pump.

The ER series T-base offers greater vacuum flow in the same foot print as the Chip Pump T-base.

Weight: 9.25 oz [262.3 g]

Code	Function	Port
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 2$ NPSF
3	Exhaust	G $1 / 2$ NPSF

T12F Base ER Pumps w/ Integrated Filter
Similar to the 12 F t-base, our ER Pump with Integrated Filter allows one to five ER venturis to be internally connected in parallel to obtain a greater combined vacuum flow rate. This pump incorporates the bowl, gasket, and filter element of our t-style filters directly into the pump base eliminating the necessity of incorporating an external filter into the vacuum system.

Code	Function	Port
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 2$ NPSF
2A	Vacuum, Alternate	G $1 / 8$ NPSF
3	Exhaust	G $1 / 4$

Manual Valve ER Pumps

EDCO Vacuum pumps with manual valve (MV) option provide a compact compressed-air powered control unit for vacuum workholding fixtures. An easily-readable 1-1/2" vacuum gauge displays depth of vacuum within the system so a technician can determine whether an adequate vacuum level has been achieved based on experience.

Manual Valve ER Pumps w/ Integrated Filter

EDCO Vacuum pumps with manual valve (MV) option provide a compact compressed-air powered control unit for vacuum workholding fixtures. An easily-readable 1-1/2" vacuum gauge displays depth of vacuum within the system so a technician can determine whether an adequate vacuum level has been achieved based on experience. This pump incorporates the bowl, gasket, and filter element of our t-style filters directly into the pump base eliminating the necessity of incorporating an external filter into the vacuum system.

Additional Weight: 0.11 oz [3.1 g]

Additional Weight: $0.56 \mathrm{oz}[15.8 \mathrm{~g}]$

Code	Function	Port
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 8$ NPSF
2 A	Vacuum, Alternate	G $1 / 8$ NPSF
3	Exhaust	G $1 / 4$

Dual ER Pumps w/ Pilot Controlled Air-Supply

Miniature DER series vacuum pumps provide full control features in a compact package. These lightweight pumps can be mounted near the point of vacuum usage to eliminate long vacuum lines and improve system response. DER pumps are availalable with single or dual coaxial ejectors to match pump performance to system requirements. Quick-release air is controlled via an integral flow control valve so blow-off intensity can be fine-tuned for delicate, lightweight parts. Using $1 / 8$ inch vacuum ports allows for taking advantage of high vacuum flow produced by coaxial ejectors that are designed to handle porour materials at mid-range vacuum levels. An optional non-return valve is available for use in sealed, non-porous systems.

Code	Function	Port
1	Air-Supply	G 1/8 NPSF
2	Vacuum	G 1/8 NPSF
PS	Pilot - Air-Supply	M5x0.8 (10-32 UNF)

Dual ER Pumps w/ Pilot Controlled Air-Supply \& Release
Miniature DER series vacuum pumps provide full control features in a compact package. These lightweight pumps can be mounted near the point of vacuum usage to eliminate long vacuum lines and improve system response. DER pumps are availalable with single or dual coaxial ejectors to match pump performance to system requirements. Quick-release air is controlled via an integral flow control valve so blow-off intensity can be fine-tuned for delicate, lightweight parts. Using $1 / 8$ inch vacuum ports allows for taking advantage of high vacuum flow produced by coaxial ejectors that are designed to handle porour materials at mid-range vacuum levels. An optional non-return valve is available for use in sealed, non-porous systems.

Code	Function	Port
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 8$ NPSF
PS	Pilot - Air-Supply	M5x0.8 (10-32 UNF)
PR	Pilot - Blow-Off	M5 $\times 0.8$ (10-32 UNF)

Dual ER Pumps w/ Solenoid Controlled Air-Supply
Miniature DER series vacuum pumps provide full control features in a compact package. These lightweight pumps can be mounted near the point of vacuum usage to eliminate long vacuum lines and improve system response. DER pumps are availalable with single or dual coaxial ejectors to match pump performance to system requirements. Quick-release air is controlled via an integral flow control valve so blow-off intensity can be fine-tuned for delicate, lightweight parts. Using $1 / 8$ inch vacuum ports allows for taking advantage of high vacuum flow produced by coaxial ejectors that are designed to handle porour materials at mid-range vacuum levels. An optional non-return valve is available for use in sealed, non-porous systems.

Order SV10-QD-1M solenoid cables separately.

	Series	Number of Ejectors		Option		Sensor Options	
DER18-	10L			-S24D			
	05	X1	Single Ejector	(Blank)	None	(Blank)	None
	07	X2	Dual Ejector	-NR	Non-Return	-VA3	Analog, 3 Wire
	09					-VN3	NPN, 3 Wire
	10					-VN4	NPN, 4 Wire
	08L					-VP3	PNP, 3 Wire
	10L					-VP4	PNP, 4 Wire

Code	Function	Port
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 8$ NPSF

Dual ER Pumps w/ Solenoid Controlled Air-Supply \& Release

Miniature DER series vacuum pumps provide full control features in a compact package. These lightweight pumps can be mounted near the point of vacuum usage to eliminate long vacuum lines and improve system response. DER pumps are availalable with single or dual coaxial ejectors to match pump performance to system requirements. Quick-release air is controlled via an integral flow control valve so blow-off intensity can be fine-tuned for delicate, lightweight parts. Using $1 / 8$ inch vacuum ports allows for taking advantage of high vacuum flow produced by coaxial ejectors that are designed to handle porour materials at mid-range vacuum levels. An optional non-return valve is available for use in sealed, non-porous systems.

Order SV10-QD-1M solenoid cables separately.

Code	Function	Port
1	Air-Supply	G 1/8 NPSF
2	Vacuum	G 1/8 NPSF

Surface Mount Micro Pump

Simply add a vacuum passage and two tapped holes to any flat surface to integrate our micro-vacuum pump into a machine component. An integral push-in 4 mm (5/32") tube fitting air supply and an atmospheric exhaust will almost eliminate assembly labor.

Select from five ER venturi sizes to match vacuum pump specifications to your application requirements and minimize compressed air consumption.

Code	Function	Port
1	Air-Supply	$4 \mathrm{~mm}(5 / 32)$ Tube
2	Vacuum	$\varnothing 0.42 \mathrm{in}[10.7 \mathrm{~mm}]$
3	Exhaust	-

Performance

Vacuum Flow - SCFM

For $\mathrm{X} 2, \mathrm{X} 3, \& \times 4$ flow rates multiply the value in the table by 2,3 , or 4 respectively.
For example, an ER09X3 @ 15 inHg would flow: $0.32 \times 3=0.96$ SCFM

Model	Air Supply PSI	Air Consu SCFM	Max Vacuum inHg	SCFM at Vacuum Level							
				3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg
ER05	72	0.4	26.7	0.25	0.22	0.20	0.15	0.12	0.07	0.03	0.01
ER07	72	0.8	26.7	0.34	0.33	0.31	0.25	0.21	0.14	0.05	0.02
ER09	72	1.4	25.5	0.54	0.47	0.40	0.36	0.32	0.24	0.15	0.02
ER10	72	1.8	28.0	0.70	0.57	0.46	0.35	0.33	0.27	0.21	0.12
ER08L	72	1.2	23.6	0.88	0.76	0.58	0.44	0.33	0.26	0.13	-
ER10L	72	1.9	23.6	1.34	1.22	1.03	0.89	0.70	0.51	0.29	-
ER08L	60	1.0	20.4	0.91	0.79	0.59	0.42	0.35	0.19	-	-
ER10L	60	1.65	21.6	1.31	1.17	1.01	0.79	0.60	0.28	0.04	-

SCFM $\times 28.32=n / / m$

Evacuation Time - sec / 100 in 3

For $\mathrm{X} 2, \mathrm{X} 3, \& \times 4$ evacuation time multiply the value in the table by 2 , 3 , or 4 respectively.
For example, an ER07X2 @ 15 inHg would evacuate $100 \mathrm{in}^{3}: 8.1 \times 2=16.2$ seconds

Model	Air	Air	Max	SCFM at Vacuum Level							
	Supply PSI	Consu SCFM	Vacuum inHg	3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg
ER05	72	0.4	26.7	1.0	2.5	4.5	7.5	12.5	20.0	35.0	-
ER07	72	0.8	26.7	0.8	1.8	3.1	5.1	8.1	13.1	22.8	-
ER09	72	1.4	25.5	0.5	1.1	2.0	3.4	5.4	8.7	14.8	-
ER10	72	1.8	28.0	0.4	2.9	1.7	2.8	4.6	7.5	12.7	-
ER08L	72	1.2	23.6	0.3	0.7	1.3	2.2	3.7	6.1	10.5	-
ER10L	72	1.9	23.6	0.2	0.5	0.8	1.4	2.2	3.6	6.1	-
ER08L	60	1.0	20.4	0.3	0.7	1.3	2.1	3.6	6.1	11.0	-
ER10L	60	1.65	21.6	0.2	0.5	0.8	1.4	2.3	3.8	6.8	-

sec $/ 100 \mathrm{in}^{3} \times 0.61=\sec / 1$

Vacuum Grippers Section 11

FDIDUSA

VG-G12

Basic Information

Coaxial Venturi Technology

The ER L-series nozzles have been specifically tuned and optimized to provide the high-flow mid-range vacuum that a typical industrial system requires. This vacuum pump can efficiently handle a wide variety of both porous and non-porous applications at only 72 psi (5 bar) air supply.

Additional benefits of EDCO ER L-series venturis are rugged metal nozzles, no internal flap valves to foul and a large nozzle throat gap that allows ingested debris to pass through and out the exhaust. When coupled with the PP or LP purge options, debris too large to pass can be expelled between cycles.

Centralized System

A centralized system has one "central" vacuum pump supplying all vacuum cups in the system so all cups operate at the same system vacuum level. This vacuum level is affected by the flow capacity of the vacuum pump and the aggregate system leakage. System internal volume is increased by the necessary vacuum hoses, manifolds and tubing in a centralized system. The increased volume results in a longer evacuation time for the system to attain a safe vacuum level.

Centralized vacuum pumps are necessarily oversized to provide enough extra vacuum flow capacity to overcome normal porosity and cup wear. However, in instances where there is gross leakage caused by non-sealing vacuum cups due to missing or damaged work pieces, pump capacity can't overcome the leakage and system vacuum level can be reduced to the point where it is unsafe or impossible to pick up the work pieces. Interdependence of all suction cups in a system is not desirable so EDCO has developed components such as Flow Sensor Valves and Dual-Flow valves to make centralized systems perform better by limiting the flow loss from non-sealing suction cups.

Part quick-release, or blow-off, is accomplished by injecting a blast of compressed air through an isolation check valve and into the centralized vacuum system somewhere prior to the suction cups. This pulse of air quickly dissipates system vacuum. Since flow follows the path of least resistance, most of the air can flow out of the pump exhaust instead of to the suction cups.

Operating Pressure

Operating a vacuum generator at a lower pressure will not result in reduced energy consumption. Energy usage of airpowered devices is measured by the volume flow rate of compressed air. Operating one machine device at 45 psi, for example, will not reduce the overall energy consumption of a manufacturing plant because of all the other machine devices that still require higher air pressures to function properly. The central compressed air system must be tuned to continuously provide at least the minimum air pressure required by any device in the plant.

To make direct comparisons possible, air consumption at different operating pressures must be converted to a "standard' or "naturalized" volume at standardized atmospheric conditions. For example, either 1.0 SCFM ($28.3 \mathrm{NI} / \mathrm{m}$) at $87 \mathrm{psi}(6 \mathrm{bar})$ or 1.36 SCFM ($38.5 \mathrm{NI} / \mathrm{m}$) at $60 \mathrm{psi}(4 \mathrm{bar})$ are equivalent to $6.9 \mathrm{SCFM}(195 \mathrm{NI} / \mathrm{m})$ at standard atmospheric conditions and are thus equivalent compressor loads.

Compressed air systems are designed with receivers (storage tanks) that are charged with high pressure air to serve as accumulators that can supply air flow in addition to what the compressor can produce for short periods of time. During extreme peak demands, the stored high pressure air may be drawn down, or depleted, causing the delivered system pressure to dip below optimum pressure. For this reason industrial machines are commonly designed to operate at only 80 psi, but some plants with marginal air systems may require machines to operate at only 60 psi. Systems that are optimized to operate at reduced air pressure should include air regulators set to deliver the proper minimum design pressure otherwise air consumption (energy costs) will be increased substantially whenever the system air pressure is higher.

Basic Information

Discrete Systems

A discrete system is made up of several mini-system units. Each unit consists of a small vacuum pump coupled to a single suction cup so that each unit operates independently of the others. Leakage at a non-sealing cup can only affect the vacuum level of that single cup so any leakage problems are automatically isolated. This gives the overall system the best possible chance to operate reliably even with a reduced number of active cups.

An EDCO Vacuum Gripper integrates a vacuum pump and suction cup into one compact unit to eliminate all excess system volume so that evacuation time is minimized.

A discrete system may be split into several zones that are each controlled by separate air supply valves to allow operation of one, several, or all zones as the application requirements change. All discrete units in a zone are simultaneously turned on or off via the compressed air supply - however, each mini-system unit still operates independently on the vacuum side.

Part quick-release is accomplished by blocking the pump exhaust with an air piloted piston which causes the pump air supply to flow directly into the vacuum cup because there is no other possible flow path. This positive pressure reverse flow not only provides a very fast part release but also provides a cleaning action to purge any debris that was ingested into the suction cup.

1) Compressed Air Line
2) Vacuum Generator
3) Vacuum Cup

Optional Rugged Shear Key Mount

Two-point mount with shear keys eliminates the possibility of the pumps shifting out of position during operation. Work loads are efficiently and directly transferred to the mounting profile so that mounting screws carry only tensile loads.

Vacuum Grippers mount easily to extrusion profiles having $5 / 16 "(8 \mathrm{~mm})$ T-slots so they can be easily repositioned to accommodate changing handling conditions. The twopoint mount provides security and rigidity.

Loosen two screws, and slide the vacuum gripper to the desired location.

Positive Pressure Purge (PP)

Air pressure supplied to the venturi is diverted to the vacuum port by blocking the venturi exhaust with a piston operated by a pilot pressure signal. Push-in tube connector swivel accepts 5/32 (4MM) tubing. Tool separation movement must begin immediately (no dwell) when purge signal is initiated to prevent excessive positive pressure inside suction cups due to forces pressing the tool onto the work surface. Do not use PP option with vacuum switches due to the limited over-pressure capability of switches.

Limited Pressure Purge (LP)

Similar to Positive Purge except includes an orifice in the purge piston. Purge air flow is not as robust as with the PP option, but air pressure is limited inside the suction cups.

VG18: G 1/8 NPSF

	Venturi	Purge ${ }^{1}$		Sensor Port		Silencer	
VG18-	10L						
	05	(Blank)	None	(Blank)	None	(Blank)	None
	07	-LP	Limited Pressure	-A5F	M5 Sensor Port, A Side	-AA	AA14M
	09	-PP	Positive Pressure	-B5F	M5 Sensor Port, B Side	-ST	STA14M
	10						
	08L						
	10L						

Weight: 2.24 oz [63.6 g]
'Only available with O8L or 10L venturi series. Cannot be used with a silencer.

0.13 [3.3] Thru 2 Places

Groove accepts -014 standard O-Ring EDCO Part \# N70-014 (o-ring not included)

Additional Weight: 0.14 oz [4.0 g]

Code	Function	Port
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / / 8$ NPSF
3	Exhaust	G $1 / 4$

VG18 Options

-PP / -LP: Purge Options

Air pressure supplied to the venturi is diverted to the vacuum port by blocking the venturi exhaust with a piston operated by a pilot pressure signal. Push-in tube connector swivel accepts $5 / 32$ [4 mm] tubing. Tool separation movement must begin immediately (no dwell) when purge signal is initiated to prevent excessive positive pressure inside vacuum cups due to forces pressing the tool onto the work surface. Do not use PP option with vacuum switches due to the limited overpressure capability of switches.

Limited Purge is similar to Positive Purge except includes an orifice in the purge piston. Purge air flow is not as robust as with the PP option, but air pressure is

Additional Weight: 0.83 oz [23.5 g] limited inside the suction cups.

The differences between LP and PP options are internal and do not affect outward appearance or overall size and weight.

-A5F / -B5F: M5 Vacuum Sensor Port Options

An additional M5x0.8 port is added for use as an auxiliary vacuum port. Choose the side best suited for your application.

Any of our vacuum sensors that use an M5 male connection thread can be used with the M5 sensor port options.

-A5F: Sensor Port Option

-B5F: Sensor Port Option

VG18 Accessories

VG18-TKIT:T-Nut Mount Kit

EDCO Vacuum Gripper T-Nut kits include two t-nuts and the appropriate M5 screws for your pump model.

Additional Weight: 0.61 oz [17.4 g]

VG38: G 3/8

	Venturi		Release Options	Mount Options		Silencer ${ }^{1}$	
VG38-	10L						
	05	(Blank)	None	(Blank)	None	(Blank)	None
	07	-AQR	Atmospheric Quick Release	-A	Pin	-AA	AA14M
	09	-LP ${ }^{1}$	Limited Purge	-B	Ball	-ST	STA14M
	10	-PP ${ }^{1}$	Positive Purge				
	08L						
	10L						

Weight: 2.95 oz [83.5 g]
${ }^{1}$ Only available with 08L or 10 L venturi series. Cannot be used with a silencer.

M8×1. 25 for Mount Options

Code	Function	Port
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	G $3 / 8$
$2 A$	Vacuum - Auxiliary	G $1 / 8$ NPSF
3	Exhaust	G $1 / 4$

Additional Weight: 0.25 oz [7.1 g]

VG38 Options

-AQR: Atmospheric Quick Release

Vacuum generators, or vacuum pumps, are powered by compressed air to create vacuum. When the air source is turned off, vacuum is dissipated by atmospheric air entering the exhaust port and reverse flowing through the last venturi nozzle. This works well for slow cycle speeds and small cups but when relatively large cups are used with small vacuum generators then reverse air flow may not be sufficient to dissipate residual vacuum fast enough.

The AQR valve is spring-biased open but is held closed by air pressure supplied to the vacuum generator. When the air supply is turned off, vacuum is no longer

Additional Weight: 0.55 oz [15.5 g] generated and the $A Q R$ valve opens a large passage to atmosphere so that vacuum is quickly dissipated to release the work object.

-PP / -LP: Purge Options

Air pressure supplied to the venturi is diverted to the vacuum port by blocking the venturi exhaust with a piston operated by a pilot pressure signal. Push-in tube connector swivel accepts $5 / 32[4 \mathrm{~mm}]$ tubing. Tool separation movement must begin immediately (no dwell) when purge signal is initiated to prevent excessive positive pressure inside vacuum cups due to forces pressing the tool onto the work surface. Do not use -PP option with vacuum switches due to the limited over-pressure capability of switches.

Limited Purge is similar to Positive Purge except includes an orifice in the purge piston. Purge air flow is not as robust as with the -PP option, but air pressure is limited inside the suction cups.

Additional Weight: 0.83 oz [23.5 g]

The differences between LP and PP options are internal and do not affect outward appearance or overall size and weight.

[^2]
VG38 Options

Swivel Mount Options

There are two types of swivel mount options available for the VG38 vacuum gripper. Both types of mounts connect with EDCO USA Modular Automation Tooling Arms.

-A : Pin Mount

Allows rotational adjustment of a vacuum cup about a single axis. These are also known as lock-pin or apple-core mounts.

Additional Weight: 1.37 oz [38.9 g]

-B : Ball Mount

Allows universal adjustment of a vacuum cup about a single suspension point.
These are also known as a swivel joint.

VG38 Accessories

VG38-TKIT: T-Nut Mount Kit

EDCO Vacuum Gripper T-Nut kits include two t-nuts and the appropriate M5 screws for your pump model.

Use either top or side mount positions.

Additional Weight: 0.67 oz [19.0 g]

DVG38: Dual Venturi, G 3/8

${ }^{1}$ Only available with 08L \& 10 L venturis.
${ }^{2}$ Exhaust adapter option required when selecting a silencer option.

Weight: $0.20 \mathrm{lbs}[90.7 \mathrm{~g}]$

Code	Function	Ports
1	Air Supply	G $1 / 8$ NPSF
2	Vacuum - Main	G 3/8
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF
3	Exhaust	-

DVG38 Options

Purge Options

Differences between positive pressure and limited pressure purge options are internal.

EA: Exhaust Adapter

DVG38 Accessories

DVG38-TKIT: T-Nut Mount Kit

EDCO Vacuum Gripper T-Nut kits include two t-nuts and the appropriate M5 screws for your pump model.

Use either top or side mount positions.

Additional Weight: 0.89 oz [23.3 g]

VGP38: Low-Profile Vacuum Gripper, G 3/8
EDCO VGP pumps are a direct interchange with competitor brands but provide improved vacuum flow (10L) and better reliability because there are no flapper valves or filter screens to collect ingested debris.

Exhaust extension may be removed to add LP or PP purge options for faster part release or for a true reverse-flow cleaning mode to blow out ingested debris.

M6 or M8 stud mounting hardware may be installed in any of the three locations.

${ }^{1}$ Only available on 08L \& 10L Venturi
${ }^{2}$ When selecting a mount option, mount position selection is required.

Code	Function	Port
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	G $3 / 8$
$2 A$	Vacuum, Alternate	G $1 / 8$ NPSF
3	Exhaust	-

VGP38 Options

-PP / -LP: Purge Options

Air pressure supplied to the venturi is diverted to the vacuum port by blocking the venturi exhaust with a piston operated by a pilot pressure signal. Push-in tube connector swivel accepts $5 / 32$ [4 mm] tubing. Tool separation movement must begin immediately (no dwell) when purge signal is initiated to prevent excessive positive pressure inside vacuum cups due to forces pressing the tool onto the work surface. Do not use PP option with vacuum switches due to the limited over-
 pressure capability of switches.

Limited Purge is similar to Positive Purge except includes an orifice in the purge piston. Purge air flow is not as robust as with the PP option, but air pressure is limited inside the suction cups.

The differences between LP and PP options are internal and do not affect outward appearance or overall size and weight.

Code	Function	Port
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	G 3/8
2 A	Vacuum, Alternate	G $1 / 8$ NPSF
3	Exhaust	-

VGP Options

Stud Mounts

We offer M6 threads by 22 MM length, and M8 threads by 16 and 27 MM lengths. The extrusion mounts come with a T-Nut for mounting to an extrusion.

The mounting kits are made to fit into any of the three alternate vacuum ports designated by the Top, A-Side, and B-Side positions.

M8x27

Weight: $0.05 \mathrm{Ibs}[22.1 \mathrm{~g}]$

Weight: $0.02 \mathrm{Ibs}[10.3 \mathrm{~g}]$

Weight: $0.05 \mathrm{Ibs}[22.1 \mathrm{~g}]$

Weight: $0.06 \mathrm{Ibs}[26.6 \mathrm{~g}]$

VGIF: Integrated Filter, G 3/8

The integrated filter vacuum grippers work in the same way as the VG38. The body of the VGIF vacuum gripper includes a variety of holes for mounting. Two M5 x 0.8 holes are located on the face opposite the vacuum port while clearance holes for M5 socket head cap screws can be used from a total of 4 faces. This pump incorporates the bowl, gasket, and filter element of our t-style filters directly into the pump base eliminating the necessity of incorporating an external filter into the vacuum system.

M5x0.8
2 Places

Additional Weight: 0.14 oz [4.0 g]

Optional ST Silencer

Additional Weight: 0.25 oz [7.1 g]

Code	Function	Port
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	G 3/8
2 A	Vacuum, Alternate	G $1 / 8$ NPSF
3	Exhaust	G $1 / 4$

VG-G12: Multi-Stage, G 1/2 NPSF

VG12 has the vacuum flow capacity required for larger diameter cups, especially when they are used on porous surfaces. Multi-stage nozzles have the same flow capacity as EDCO Classic pumps and provide quick evacuation times for bellows cups with large internal volumes.

Multiple $1 / 8$ " vacuum accessory ports allow adding vacuum sensors or an air-assisted quick release circuit.

For performance data, see Classic Pump performance.

Code	Function	Port
1	Air Supply	G $1 / 8$ NPSF
1A	Alternate Air Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 2$
2 A	Alternate Vacuum	G $1 / 8$ NPSF
3	Exhaust	G $1 / 4$

VG-G12 Mount Options

The pump body comes standard with through-holes for mounting to a vertical surface or to the side of an extrusion profile, or optional M8 or M12 stud mounts may be installed in the top or on either side of the pump body (Loctite is recommended).

Our versatile mounting bracket kit may be used to position the pump in 45-degree increments either alongside or underneath an extrusion profile to suit your application.

Stud Mounts

Kits include stainless steel stud and jam nut.
Weight: 0.03 Ibs [14.2 g]
VG-G12-M12
M12X1.75 Stud \& Jam Nut

VG-G12-M8
M8X1.25 Stud \& Jam Nut

VG-G12-BKT-90: Mounting Bracket

Kit includes stainless steel bracket and M6X10 socket head cap screws (2).
Weight: $0.20 \mathrm{lbs}[90.6 \mathrm{~g}]$

Performance

For information regarding the performance of our ER-10, ER-09, ER-07, and ER-05 venturis, please refer to ER Series Vacuum Pump performance (Section 10).

Performance
SCFM
SCALE

DVG	VG

Evacuation Time

In a non-porous system, evacuation time for any vacuum cup is calculated by multiplying the internal cup volume by the time factor for the desired vacuum level from the Evacuation Time Calculation Table.

Example: XP-B75 @ 15 inHg [50.8 kPa]
$\frac{\text { Volume }}{6.7 \mathrm{in}^{3}} \times \frac{\text { Time Factor }}{0.022 \mathrm{sec} / \mathrm{in}^{3}}=\frac{\text { Evacuation Time }}{0.15 \mathrm{sec}}$

Vacuum Level: $\mathrm{inHG}(-\mathrm{kPa})$	$9(30.5)$	$12(40.6)$	$15(50.8)$	$18(61)$	$21(71)$
Time Factor: $\mathrm{sec} / \mathrm{in}^{3}$	0.008	0.014	0.022	0.022	0.061

ER-10L Performance in a Non-Porous System

	B30	B40	B50	B75	B110	BF80	BF100	F75	F110	FC75	FC100
Volume: in ${ }^{3}$ [cc]	0.61 [10]	0.9 [14.7]	2.0 [32.8]	6.7 [110]	19.0 [311]	1.8 [29.5]	4.9 [80.3]	1.2 [19.7]	4.3 [70.5]	2.3 [37.6]	4.9 [80.3]
Evacuation Time': sec	0.013	0.02	0.04	0.15	0.42	0.04	0.11	0.03	0.1	0.05	0.11
Force @ 15 inHG : lb [N]	4.1 [18.2]	7.3 [32.5]	12.1 [53.8]	30.8 [137]	64.1 [285]	35.0 [156]	65.0 [289]	37.5 [167]	78.3 [348]	29.1 [129]	53.3 [237]

${ }^{1}$ Evacuating to $15 \mathrm{inHG}(50.8-\mathrm{kPa})$ at 72 psi (5 bar)

RAIL SYSTEMS

SECTION 12

RAIL SYSTEM ASSEMBLIES

General Information	$12: 3$
Ordering Information	$12: 4$
Performance	$12: 4$
RS18	$12: 5$
Rail Assemblies	$12: 6-12: 8$

RAIL SYSTEMS

THE ULTIMATE VACUUM GRIPPER SYSTEM

Rail System Modules include all the features of EDCO Vacuum Grippers with a Positive or Limited Purge. In addition they include a pilot-operated cartridge valve for vacuum on/ off control. The modules mount to the side of a lightweight $1-1 / 2 \mathrm{in}$. X 3 in . rail profile. Air supply plumbing is completely eliminated by utilizing the rail as a manifold to distribute compressed air to each module.

SIMPLE SYSTEM ZONING

One of the most important features of the Rail System is the ease and ability of zoning. Zoning groups several modules to a pair of 3-way solenoid pilot valves. One solenoid pilot valve controls the vacuum-on and the second controls the positive purge for each zone. Zones can include one to several modules and a system can have one to several zones. Systems should be configured with the smallest number of zones that provide the degree of control required for the application. If the requirements of the application change over time, the Rail System can easily be reconfigured by adjusting the number of modules per zone and/or the number of zones per system.

Zones with small numbers of modules provide the most system control, however, they also require the largest number of solenoid pilot valves.

Application example: Picking and placing various sizes of cases onto a single mixed pallet load.

Systems with all modules controlled as a single zone are the simplest and require only two solenoid pilot valves. These systems are limited to basically on/off operation for all of the modules. Application example: Picking and placing identical cases onto a single pallet load.

PP: POSITIVE PRESSURE PURGE

Air pressure supplied to the venturi is diverted to the vacuum port by blocking the venturi exhaust with a piston operated by a pilot pressure signal. Tool separation movement must begin immediately (no dwell) when purge signal is initiated to prevent excessive positive pressure inside suction cups due to forces pressing the tool onto the work surface. Vacuum switches should not be used due to their limited overpressure capability.

LP : LIMITED PRESSURE PURGE

Similar to Positive Purge except it is modified to limit the pressure applied to the suction cup. Purge air flow is not as robust as with the PP option but the pressure is limited so a vacuum switch can be used for part presence detection.

CLEANING OPERATION

Some systems may not require the quick-release provided by the PP or LP options. For these systems, the purge pilot ports can be plugged and not used. However, it would be worthwhile to connect all the purge pilot ports to one pilot valve to provide a brief reverse-flow cleaning action to blow out any ingested debris from the suction cups every few cycles depending on the application environment. This brief cleaning operation won't add to total cycle time and should be performed during the return-home period while suction cups are open to atmosphere.

RUGGED SHEAR KEY MOUNT

Two-point mount with shear keys eliminates the possibility of pumps shifting out of position during operation. Work loads are efficiently and directly transferred to the mounting profile so that mounting screws carry only tensile loads.

1) M5 $X 40$ Screw
2) RS-5 - T-Nut

VACUUM CUP SELECTION

Choose vacuum cup style, size, and rubber material from section two of this catalog and add this information as a suffix to the RS18 pump model number. For example: RS18-10L-PP pump and XP-B50N cup are selected. The complete Vacuum Gripper model number would be RS18-10LP-PP-

B50N.
For simplified ordering, several Rail System model numbers are tabulated, but other combinations are readily available at standard prices. Contact your local EDCO USA distributor or call EDCO for assistance.

Cup 1	B30	B40	B50	B75	B110	BF80	BF100	F75	F110	FC75	FC100
${\text { Volume: }{ }^{3}(\mathrm{cc})}^{0.61[10]}$	$0.9[14.7]$	$2.0[32.8]$	$6.7[110]$	$19[311]$	$1.8[29.5]$	$4.9[80.3]$	$1.2[19.7]$	$4.3[70.5]$	$2.3[37.6]$	$4.9[80.3]$	
Evacuation Time $: ~ s e c$	0.013	0.02	0.04	0.15	0.42	0.04	0.11	0.03	0.1	0.05	0.11
Force @ $15 \mathrm{inHG}: \mathrm{lb}(\mathrm{N})$	$4.1[18.2]$	$7.3[32.5]$	$12.1[53.8]$	$30.8[137]$	$64.1[285]$	$35[156]$	$65[289]$	$37.5[167]$	$78.3[348]$	$29.1[129]$	$53.3[237]$

${ }^{1}$ Values apply to all cup materials
${ }^{2}$ Evacuating to $15 \mathrm{inHG}(50.8-\mathrm{kPa})$ at 72 psi (5 bar).

EVACUATION TIME

In a non-porous system, evacuation time for any vacuum cup is calculated by multiplying the internal cup volume by the time factor for the desired vacuum level from the Evacuation Time Calculation Table.

For Example: XP-B75 @ 15 inHG (50.8 kPa)
Volume Time Factor
$\mathrm{in}^{3} \quad \mathrm{sec} / \mathrm{in}^{3}$
Evacuation Time $=6.7 \times 0.022=0.15 \mathrm{sec}$

Vacuum Level: inHG (-kPa)	$9[30.5]$	$12[40.6]$	$15[50.8]$	$18[61]$	$21[71]$
Time Factor: sec/in3	0.008	0.014	0.022	0.036	0.061

PERFORMANCE

SCFM

All performance data presented is a representatation of production pumps but is not a guarantee due to variations in local barometric pressure and of mass produced components.

RS18-10L-PP / RS18-10L-LP

Weight: $0.28 \mathrm{lbs}[125.0 \mathrm{~g}]$

1) Purge Pilot Signal - M5 (10-32 UNF)
2) Air Supply - $3 / 8$ NPSF
3) Vacuum On/Off - M5 (10-32 UNF)

ALUMINUM PILOT FITTINGS
LB25-10-Elbow 10-32 UNF (M5), with 0 -ring seal
4 mm ($5 / 32$ in) O.D.
Tubing Barb

Weight: 0.0045 lbs (2.14 g)
P10-Plug 10-32 UNF(M5), with 0 -ring seal

Weight: 0.0005 lbs (0.28 g)

VACUUM SENSOR OPTION

A P10 plug can be removed from the front or side of the RS18 module to accommodate a $\mathrm{VP}-3$ or $\mathrm{VN}-3$ vacuum sensor.

SIMPLE MODULE ALIGNMENT

Placing the Reference Face of the module on the center line of the thru hole aligns the compressed air port with the thru hole.

The $1-1 / 2 " x 3$ " Aluminum extrusion profiles include $3 / 8$ " NPSF ports at each end, one for air supply and the other for a plug or a pressure gauge. Rails are drilled to mount modules on center-to-center distances to your specifications. The minimum recommended spacing is $1-1 / 2 \mathrm{in}$. (38.1 mm) but is also dependent on suction cup diameter. RS18-10L modules will be mounted to the rail and tested by EDCO USA. Pilot port fittings, zone tubing, and 3-way air solenoid pilot valves must be installed by the system integrator because of the many possible configurations.

CENTER SPACING
2.40
Insert distance from center of one module to the center of the next module (inches)

END
SPACING
$\mathbf{0 . 9}$
Insert distance from end of profile to the center of the first module

PROFILELENGTH

Minimum recommended center-to-center spacing is 1.5 in but is also dependent on suction cup diameter. The minimum recommended end spacing is 0.9 in .
Profile Length Calculation

$$
2 \times \text { End Spacing (in) }
$$

$+\quad$ Center Spacing (in) x (Number of Modules* ${ }^{*}$ 1)

* For a Double Sided rail divide the Number of Modules by 2.

Examples:

Single Sided Rail
RSA-20-2.40-0.9-S
End Spacing = 0.9
Center Spacing = 2.40
Number of Modules = 20

Double Sided Rail

RSA-40-2.00-0.9-D

End Spacing = 0.9
Center Spacing $=2.00$
*Number of Modules = 40
For the calculation we need to divide the Number of Modules by 2.
$40 / 2=20$

SINGLE OR
DOUBLE SIDED
\mathbf{S}
$\mathbf{S}=$ Single Sided
$\mathbf{D}^{\mathbf{1}}=$ Double Sided

'Limited to 50 mm and smaller cups.

Slots in Rail are still accessible

RAIL ASSEMBIY WEICHT

For total assembly weight add the Rail weight with RS18 Module weights, 0.253 lbs for the 3/8 NPSF End Caps, suction cup weights, and fitting weights.
Weight Calculations

Rail Weight (lbs)

> Profile Length (in) $\times 0.138$ +| Number of Modules $\times 0.275$ |
| :---: |
| 0.267 (End Plates) |
| R Rail Weight (lbs) |

Example:

RSA-20-2.40-0.9-S

Profile Length $=47.4$ in $\quad 47.4 \times 0.138$

Total Weight (lbs)
Rail Weight (lbs)
Number of P10 $\times 0.0005$ Number of LB25-10 $\times 0.0045$ Number of Cups \times Cup Weight + Number of Cups \times Cup Fitting Weight Total Weight (lbs)

Example:

RSA-20-2.40-0.9-S with RS18-10L-PP-B50N

Rail Weight	11.21	
20 P10 Plugs	20×0.0005	
20 LB25-10 Elbows		20×0.0045
20 XP-B50N Cups		20×0.047
20 50-38M Fittings	+	20×0.02
Total Weight		

ZONED RAIL ASSEMBLY

Typical XP-B50 center-to-center spacing of 2.36 in [60 mm].

SECTION 13

BASIC

PSB

S24D / S110A

PS

SB24D/SB110A

Basic Pumps	$13: 3-13: 4$
PS: Air Pilot Controlled Air Supply	$13: 5-13: 6$
PSB: Air Pilot Controlled Air Supply \& Blow-Off	$13: 7-13: 8$
S24D / S11OA: Solenoid Controlled Air Supply	$13: 9-13: 10$
SB24D / S11OA: Solenoid Controlled Air Supply \& Blow-Off	$13: 11-13: 12$
Options	$13: 13$
Accessories	$13: 13$
Performance	$13: 14$

Basic J-series pumps may be ordered with any of five different coaxial ejectors to match pump performance to system requirements. Vacuum on/off control is accomplished via external control valves in the pump air supply. An optional non-return vacuum check valve is available for use in sealed systems, but some method of releasing vacuum must be added to the system - see RC18 Release Check. Vacuum sensors may be installed in either of the two $1 / 8^{\prime \prime}$ auxiliary vacuum ports to monitor system vacuum level.

CODE	FUNCTION	NPT	G
1	Air Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum - Main	G $1 / 2$ NPSF	G $1 / 2$ NPSF
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	G $1 / 8$ NPSF
3	Exhaust	G $1 / 4$ NPSF	G $1 / 4$ NPSF

VENTURI DIAMETER	A in $[\mathrm{mm}]$
12	$3.09[78.5]$
15	$3.49[88.7]$

Non-Return Valve Option

Weight: 0.52 lbs [236.0 g]

Basic J-series pumps may be ordered with any of five different coaxial ejectors to match pump performance to system requirements. Vacuum on/off control is accomplished via external control valves in the pump air supply. An optional non-return vacuum check valve is available for use in sealed systems, but some method of releasing vacuum must be added to the system - see RC18 Release Check. Vacuum sensors may be installed in either of the two 1/8" auxiliary vacuum ports to monitor system vacuum level.

CODE	FUNCTION	NPT	G
1	Air Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum - Main	G $1 / 2$ NPSF	G $1 / 2$ NPSF
2 A	Vacuum - Alternate	G $1 / 8$ NPSF	G $1 / 8$ NPSF
3	Exhaust	G $1 / 2$ NPSF	G $1 / 2$ NPSF

VENTURI DIAMETER	A in (mm)
20	$4.47(113.5)$
25	$4.87(123.6)$
30	$5.71(144.9)$

Weight: 0.54 lbs [245.0 g]

Large capacity J-series coaxial pumps provide full control features in an integrated package. Pumps may be ordered with any of five different coaxial ejectors to match pump performance to system requirements. An integral pilot-operated valve provides on/off vacuum control. An optional non-return vacuum check valve is available for use in sealed systems, but some method of releasing vacuum must be added to the system - see RC18 Release Check. Vacuum sensors may be installed in either of the two 1/8" auxiliary vacuum ports to monitor system vacuum level. Large 1/2" vacuum port readily handles the high vacuum flow produced by coaxial ejectors.

Air-pilot operation simplifies integration into field-bus systems by shifting electrical control to a bank of pneumatic 3-way solenoid valves. Flexing control wires in an automation system are replaced with small diameter air tubing for greater reliability.

VENTURI DIAMETER	A in (mm)
12	$3.09(78.5)$
15	$3.49(88.7)$

Non-Return Valve Option

Weight: $0.74 \mathrm{lbs}[336.0 \mathrm{~g}]$

PS: AIR PILOT CONTROLLED VACUUM SUPPLY
Large capacity J-series coaxial pumps provide full control features in an integrated package. Pumps may be ordered with any of five different coaxial ejectors to match pump performance to system requirements. An integral pilot-operated valve provides on/off vacuum control. An optional non-return vacuum check valve is available for use in sealed systems, but some method of releasing vacuum must be added to the system - see RC18 Release Check. Vacuum sensors may be installed in either of the two $1 / 8$ " auxiliary vacuum ports to monitor system vacuum level. Large 1/2" vacuum port readily handles the high vacuum flow produced by coaxial ejectors.

Air-pilot operation simplifies integration into field-bus systems by shifting electrical control to a bank of pneumatic 3-way solenoid valves. Flexing control wires in an automation system are replaced with small diameter air tubing for greater reliability.

VENTURI DIAMETER	A in (mm)
20	$4.47(113.5)$
25	$4.87(123.6)$
30	$5.71(144.9)$

Weight: $0.76 \mathrm{lbs}[345.0 \mathrm{~g}]$

Non-Return Valve Option

Weight: $0.81 \mathrm{lbs}[367.0 \mathrm{~g}]$

JSERIES PUMPS
PSB: AIR PILOT CONTROLLED VACUUM SUPPIY \& BLOW-OFF
Large capacity J -series coaxial pumps provide full control features in an integrated package. Pumps may be ordered with any of five different coaxial ejectors to match pump performance to system requirements. An integral pilot-operated valve provides on/off vacuum control. A second integral pilot-operated valve provides quick-release air control, while an integral flow control valve that fine-tunes the blow intensity to suit the application. An optional non-return valve is available for use in sealed non-porous systems. Vacuum sensors may be installed in either of the two $1 / 8$ " auxiliary vacuum ports to monitor system vacuum level. Large $1 / 2^{\prime \prime}$ vacuum port readily handles the high vacuum flow produced by coaxial ejectors.

Air-pilot operation simplifies integration into field-bus systems by shifting electrical control to a bank of pneumatic 3 -way solenoid valves. Flexing control wires in an automation system are replaced with small diameter air tubing for greater reliability.

J	VENTURI DIAMETER	H	PORTS	-PSB-	NON RETURN	SILENCER
	12					
	$12=1.2 \mathrm{~mm}$		(Blank) = NPTF		(Blank) = No	(Blank) = None
	$15=1.5 \mathrm{~mm}$		G = G Threads		NR = Yes	ST = STA14M

CODE	FUNCTION	NPT	G
1	Air Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum - Main	G $1 / 2$ NPSF	G $1 / 2$ NPSF
$2 A$	Vacuum - Alternate	G 1/8 NPSF	G $1 / 8$ NPSF
3	Exhaust	G $1 / 4$ NPSF	G $1 / 4$ NPSF
4	Pilot Signal - Vacuum	M5X0.8	M5X0.8
(10-32 UNF)	$(10-32$ UNF)		
5	Pilot Signal - Blow-Off	M5X0.8 $(10-32 ~ U N F) ~$	M5X0.8
(10-32 UNF) $)$			

Non-Return Valve Option

Weight: 0.74 lbs [336.0 g]

PSB: AIR PILOT CONTROLLED VACUUM SUPPLY \& BLOW-OFF
Large capacity J-series coaxial pumps provide full control features in an integrated package. Pumps may be ordered with any of five different coaxial ejectors to match pump performance to system requirements. An integral pilot-operated valve provides on/off vacuum control. A second integral pilot-operated valve provides quick-release air control, while an integral flow control valve that fine-tunes the blow intensity to suit the application. An optional non-return valve is available for use in sealed non-porous systems. Vacuum sensors may be installed in either of the two 1/8" auxiliary vacuum ports to monitor system vacuum level. Large 1/2" vacuum port readily handles the high vacuum flow produced by coaxial ejectors.

Air-pilot operation simplifies integration into field-bus systems by shifting electrical control to a bank of pneumatic 3 -way solenoid valves. Flexing control wires in an automation system are replaced with small diameter air tubing for greater reliability.

| VENTURI
 DIAMETER | |
| :---: | :---: |$|$| $\mathbf{2 0}$ |
| :---: |
| $20=2.0 \mathrm{~mm}$ |
| $25=2.5 \mathrm{~mm}$ |
| $30=3.0 \mathrm{~mm}$ |

-PSB-

	4	Pilot Signal - Vacuum	$\begin{gathered} \text { M5X0.8 } \\ \text { (10-32 UNF) } \end{gathered}$	$\begin{gathered} \text { M5XO.8 } \\ \text { (10-32 UNF) } \end{gathered}$
$\underset{\sim}{\infty}$	5	Pilot Signal - Blow-Off	$\begin{gathered} \text { M5X0.8 } \\ \text { (10-32 UNF) } \\ \hline \end{gathered}$	$\begin{gathered} \text { M5X0. } 8 \\ \text { (10-32 UNF) } \end{gathered}$

Weight: $0.76 \mathrm{lbs}[345.0 \mathrm{~g}]$

Non-Return Valve Option

Weight: $0.81 \mathrm{lbs}[367.0 \mathrm{~g}]$

JSERIES PUMPS

S24D / S110A : SOLENOID CONTROLLED VACUUM SUPPLY
Large capacity J-series coaxial pumps provide full control features in an integrated package. Pumps may be ordered with any of five different coaxial ejectors to match pump performance to system requirements. An integral solenoid valve provides on/off vacuum control. An optional non-return vacuum check valve is available for use in sealed systems, but some method of releasing vacuum must be added to the system - see RC18 Release Check. Vacuum sensors may be installed in either of the two $1 / 8^{\prime \prime}$ auxiliary vacuum ports to monitor system vacuum level. Large 1/2" vacuum port readily handles the high vacuum flow produced by coaxial ejectors.

CODE	FUNCTION	NPT	G
1	Air Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum - Main	G $1 / 2$ NPSF	G $1 / 2$ NPSF
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	G $1 / 8$ NPSF
3	Exhaust	G $1 / 4$ NPSF	G $1 / 4$ NPSF

VENTURI DIAMETER	A in (mm)
12	$3.09[78.5]$
15	$3.49[88.7]$

Order DIN T-9 Molded Cords Separately: 923-2M01 = Std. 2M 923-2M31 = L.E.D. 0-50V, 2M 923-2M81 = L.E.D.70-250V, 2M

Weight: 0.82 lbs [372.0 g]

JSERIES PUMPS

S24D / S110A : SOLENOID CONTROLLED VACUUM SUPPLY
Large capacity J-series coaxial pumps provide full control features in an integrated package. Pumps may be ordered with any of five different coaxial ejectors to match pump performance to system requirements. An integral solenoid valve provides on/off vacuum control. An optional non-return vacuum check valve is available for use in sealed systems, but some method of releasing vacuum must be added to the system - see RC18 Release Check. Vacuum sensors may be installed in either of the two $1 / 8$ " auxiliary vacuum ports to monitor system vacuum level. Large $1 / 2^{\prime \prime}$ vacuum port readily handles the high vacuum flow produced by coaxial ejectors.

CODE	FUNCTION	NPT	G
1	Air Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum - Main	G $1 / 2$ NPSF	G $1 / 2$ NPSF
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	G $1 / 8$ NPSF
3	Exhaust	G $1 / 2$ NPSF	G $1 / 2$ NPSF

VENTURI DIAMETER	A in (mm)
20	$4.47(113.5)$
25	$4.87(123.6)$
30	$5.71(144.9)$

Order DIN T-9 Molded Cords Separately: 923-2M01 = Std. 2M
923-2M31 = L.E.D. 0-50V, 2 M 923-2M81 = L.E.D.70-250V, 2M

Non-Return Valve Option

Weight: 0.89 lbs [404.0 g]

JSERIES PUMPS

SB24D / SB110A : SOLENOID CONTROLLED VACUUM SUPPLY \& BLOW-OFF
Large capacity J -series coaxial pumps provide full control features in an integrated package. Pumps may be ordered with any of five different coaxial ejectors to match pump performance to system requirements. An integral solenoid valve provides on/ off vacuum control. A second integral pilot-operated valve provides quick-release air control while an integral flow control valve that fine-tunes the blow intensity to suit the application. An optional non-return valve is available for use in sealed non-porous systems. Vacuum sensors may be installed in either of the two $1 / 8$ " auxiliary vacuum ports to monitor system vacuum level. Large $1 / 2^{\prime \prime}$ vacuum port readily handles the high vacuum flow produced by coaxial ejectors.

CODE	FUNCTION	NPT	G
1	Air Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum - Main	G $1 / 2$ NPSF	G $1 / 2$ NPSF
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	G $1 / 8$ NPSF
3	Exhaust	G $1 / 4$ NPSF	G $1 / 4$ NPSF

VENTURI DIAMETER	A in (mm)
12	$3.09(78.5)$
15	$3.49(88.7)$

Order DIN T-9 Molded Cords Separately:
923-2M01 = Std. 2M
923-2M31 = L.E.D. 0-50V, 2M
923-2M81 = L.E.D.70-250V, 2M

Weight: 0.85 lbs [386.0 g]

Non-Return Valve Option

Weight: $0.90 \mathrm{lbs}[408.0 \mathrm{~g}]$

JSERIES PUMPS

SB24D / SB110A: SOLENOID CONTROLLED VACUUM SUPPLY \& BLOW-OFF
Large capacity J -series coaxial pumps provide full control features in an integrated package. Pumps may be ordered with any of five different coaxial ejectors to match pump performance to system requirements. An integral solenoid valve provides on/ off vacuum control. A second integral pilot-operated valve provides quick-release air control while an integral flow control valve that fine-tunes the blow intensity to suit the application. An optional non-return valve is available for use in sealed non-porous systems. Vacuum sensors may be installed in either of the two $1 / 8$ " auxiliary vacuum ports to monitor system vacuum level. Large $1 / 2^{\prime \prime}$ vacuum port readily handles the high vacuum flow produced by coaxial ejectors.

CODE	FUNCTION	NPT	G
1	Air Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum - Main	G $1 / 2$ NPSF	G $1 / 2$ NPSF
$2 A$	Vacuum - Alternate	G $1 / 8$ NPSF	G $1 / 8$ NPSF
3	Exhaust	G $1 / 2$ NPSF	G $1 / 2$ NPSF

VENTURI DIAMETER	A in (mm)
20	$4.47(113.5)$
25	$4.87(123.6)$
30	$5.71(144.9)$

Order DIN T-9 Molded Cords Separately:
923-2M01 = Std. 2M
923-2M31 = L.E.D. 0-50V, 2M 923-2M81 = L.E.D.70-250V, 2M

Weight: $0.92 \mathrm{lbs}[417.0 \mathrm{~g}]$

Weight: $0.97 \mathrm{lbs}[440.0 \mathrm{~g}]$

JSERIES PUMPS

NON-RETURN VALVE

OPTIONS

SILENCERS
STA14M

STC12M

$\varnothing 1.48$
[37.6]

Weight: $1.18 \mathrm{oz}[33.6 \mathrm{~g}]$

ACCESSORIES

VG15-18CB

VSA18-NCL

DVN-61-18M

DVN-200

All performance data presented is a representatation of production pumps but is not a guarantee due to variations in local barometric pressure and of mass produced components.

VACUUM FLOW -SCFM

MODEL	$\begin{gathered} \text { AIR } \\ \text { SUPPLY } \end{gathered}$	$\begin{aligned} & \text { AIR } \\ & \text { CONS } \end{aligned}$		SCFM AT VACUUM LEVEL							
	PSI	SCFM	inHG	3 inHG	6 inHG	9 inHG	12 inHG	15 inHG	18 inHG	21 inHG	24 inHG
J12H	60	2.9	26	1.2	1.0	0.8	0.6	0.5	0.4	0.3	0.1
J15H	60	4.0	26.7	2.0	1.8	1.4	1.2	0.8	0.6	0.4	0.3
J20H	60	6.7	26.7	3.9	3.4	2.7	2.2	1.6	1.3	0.7	0.4
J25H	60	10.9	26.3	6.1	5.3	4.3	3.5	2.6	1.8	1.2	0.7
J30H	60	15.8	26.7	7.8	6.8	5.4	4.6	3.5	2.4	1.8	0.9

SCFM X $28.32=\mathrm{nl} / \mathrm{m}$
EVACUATION TIME-SEC / FT ${ }^{3}$

MODEL	$\begin{gathered} \text { AIR } \\ \text { SUPPLY } \end{gathered}$	$\begin{gathered} \text { AIR } \\ \text { CONS } \end{gathered}$	MAX VACUUM	SECONDS TO VACUUM LEVEL							
	PSI	SCFM	inHG	3 inHG	6 inHG	9 inHG	12 inHG	15 inHG	18 inHG	21 inHG	24 inHG
J12H	60	2.9	26	3.7	1.0	16.5	28.4	47.2	78.0	134.0	252.0
J15H	60	4.0	26.7	2.2	5.2	9.7	16.4	27.0	63.3	77.0	147.0
J20H	60	6.7	26.7	1.1	2.7	5.1	8.5	14.0	23.1	39.8	76.2
J25H	60	10.9	26.3	0.7	1.7	3.2	5.4	8.9	14.7	25.3	48.0
J30H	60	15.8	26.7	0.6	1.4	2.5	4.3	7.0	11.4	19.6	37.2

$\mathrm{sec} / \mathrm{ft}^{3} \times 35.32=\mathrm{sec} / \mathrm{m}^{3}$

Single-Stage Vacuum Pumps Section 14

FDPD LLSA

EV Series

SM Series

V Series

Variable Displacement

EV Series Vacuum Pump

EV single-stage vacuum generators provide a compact, lightweight, low-cost vacuum source for pick \& place and material handling applications. The simple two-piece design allows ingested debris to exit the exhaust port. The optional "ST" straight-through exhaust silencer is a no-clog design that will pass ingested debris to atmosphere.

A G 1/8 NPSF auxiliary vacuum port is included so a gauge or vacuum switch can be easily added to complete a system. Construction is aluminum with anodized pump body and electroless-nickel plated primary nozzle.

Weight: 1.56 oz [44.2 g]

Silencer
EV05HS

(Blank)	None
-ST	STA14M
-AA	AA14M

Code	Function	Ports
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	G $1 / 8$ NPSF
3	Exhaust	G $1 / 4$

EV Series Vacuum Pump

EV single-stage vacuum generators provide a compact, lightweight, low-cost vacuum source for pick \& place and material handling applications. The simple two-piece design allows ingested debris to exit the exhaust port. The optional "ST" straight-through exhaust silencer is a no-clog design that will pass ingested debris to atmosphere.

A G 1/8 NPSF auxiliary vacuum port is included so a gauge or vacuum switch can be easily added to complete a system. Construction is aluminum with anodized

Weight: 1.98 oz [56.0 g] pump body and electroless-nickel plated primary nozzle.

	Silencer	
EV10HS		
	(Blank)	None
	- ST	STA18M
	- AA	AA18M

EV Series Vacuum Pump

EV single-stage vacuum generators provide a compact, lightweight, low-cost vacuum source for pick \& place and material handling applications. The simple two-piece design allows ingested debris to exit the exhaust port. The optional "ST" straight-through exhaust silencer is a no-clog design that will pass ingested debris to atmosphere.

A G 1/8 NPSF auxiliary vacuum port is included so a gauge or vacuum switch can be easily added to complete a system. Construction is aluminum with anodized

Weight: 3.27 oz [92.8 g] pump body and electroless-nickel plated primary nozzle.

Code	Function	NPT	G
1	Air-Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$1 / 4$ NPTF	G $1 / 4$
$2 A$	Vacuum - Auxiliary	G $1 / 8$ NPSF	
3	Exhaust	$1 / 4$ NPTF	G $1 / 4$

EV Series Vacuum Pump

EV single-stage vacuum generators provide a compact, lightweight, low-cost vacuum source for pick \& place and material handling applications. The simple two-piece design allows ingested debris to exit the exhaust port. The optional "ST" straight-through exhaust silencer is a no-clog design that will pass ingested debris to atmosphere.

A G 1/8 NPSF auxiliary vacuum port is included so a gauge or vacuum switch can be easily added to complete a system. Construction is aluminum with anodized pump body and electroless-nickel plated primary nozzle.

Weight: 8.45 oz [239.6 g]

EV Series Performance

Vacuum Flow - SCFM

Model	Air-Supply PSI	Air Cons SCFM	$\begin{gathered} \text { Max Vac } \\ \text { inHg } \end{gathered}$	SCFM at Vacuum Level							
				3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg
EV05HS	72	0.4	26.7	0.25	0.22	0.20	0.15	0.12	0.7	0.03	0.01
EV10HS	72	1.8	28	0.70	0.57	0.46	0.35	0.33	0.27	0.22	0.13
EV15HS	72	4.0	27.3	2.27	1.94	1.56	1.24	0.94	0.66	0.39	0.33
EV2OHS	72	7.4	27.8	4.01	3.48	2.74	2.42	1.78	1.17	0.83	0.45

SCFM $\times 28.32=n 1 / m$

Evacuation Time - sec / $100 \mathrm{in}^{3}$

Model	Air-SupplyPSI	Air Cons SCFM	Max Vac inHg	SCFM at Vacuum Level							
				3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg
EV05HS	72	0.4	26.7	1	2.5	4.5	7.5	12.5	20	35	-
EV10HS	72	1.8	28	0.36	0.44	1.6	2.8	4.6	7.6	12.6	23.6
EV15HS	72	4.0	27.3	0.11	0.27	0.5	0.86	1.4	2.3	4.1	7.8
EV20HS	72	7.4	27.8	0.06	0.15	0.3	0.5	0.8	1.3	2.2	4.2

$\mathrm{sec} / 100 \mathrm{in}^{3} \times 0.61=\mathrm{sec} / 1$

V Series Vacuum Pumps

V-Series vacuum pumps are available in 24 models with anodized aluminum bodies plus 12 cartridge models for integration into custom vacuum manifold systems.

EDCO Single-Stage Pumps provide the instantaneous response common to air operated devices in addition to being compact, light, and cost-effective. Rugged, all-metal construction will provide years of trouble-free service.

Our no-clog, flow-through design is perfectly suited for packaging and other applications involving paper fibers or other debris that can be ingested into the vacuum system. Our optional straight-through silencer passes the exhaust directly to atmosphere after absorbing high-frequency noise from the air stream. Many of our competitors use closedend plastic exhaust mufflers where the exhaust is passed

Principles of Operation

To generate vacuum, compressed air is supplied to the inlet of a shaped primary nozzle to concentrate the air stream so that it increases in velocity as it passes through the nozzle throat. As velocity increases, pressure decreases until it is below atmospheric pressure (vacuum) and the high-velocity air stream is passed into a second nozzle that is spaced away from the end of the primary nozzle. The gap between the two nozzles occurs within a chamber with a threaded port for connecting to a system requiring a vacuum source. As evacuated air flows into the vacuum port, it is drawn into a second nozzle where it is mixed with air from the primary nozzle and combined flow is exhausted to atmosphere after passing through a silencer where expansion continues and noise is absorbed by an acoustic media.

To stop the vacuum, the compressed air supply is removed and vented by a 3-way supply valve. When air flow stops, vacuum is no longer generated and ambient air flows into the exhaust and into the vacuum line to dissipate the residual vacuum thereby releasing work pieces from vacuum cups or other vacuum holders in the system.
through a filter media that will accumulate debris, eventually causing a loss of pump performance. In systems where conditions are very dirty, such as woodworking, a vacuum filter should be used to remove dust and debris so they will not be dispersed in the exhaust and breathed by workers.

As always, to obtain maximum benefits of EDCO compressed air powered vacuum pumps, they should be mounted close to the point of vacuum usage to minimize line losses, reduce vacuum system volume, and minimize system evacuation time.

For ease of mounting, V-Series Pump bodies feature square or rectangular cross-sections and include mounting holes. This results in a much simpler installation with a better appearance than with cylindrical body vacuum pumps.

Geometry of the primary and secondary nozzles determines the shape of the pump performance curve and the depth of vacuum that can be achieved. Nozzles are optimized for operation at specific pressure but can be used at other supply pressures to suit an application. When operating at some non-optimum air pressure, a rapid popping noise may be heard in the exhaust which is caused when air velocity achieves unstable, supersonic / subsonic velocity and can be eliminated by slightly increasing or decreasing the air supply pressure.

There are many terms for these devices included generator, ejector, and venturi. They are commonly called vacuum pumps in the industry, so that is the term we use. No matter what the name is, they are very useful for providing fast, reliable, compact, low-cost vacuum sources for all manners of application.

V Series Venturi Cartridges

V10 and V20 Series Nozzle Sets can be ordered on their own for use in your custom applications.

Contact EDCO USA for cavity detail drawing.

	Nozzle Set	Series
V-	60	H
	60	H
	90	$\mathrm{H}-60$
	100	M
	150	$\mathrm{M}-60$

V10 Vacuum Pumps

V20 Vacuum Pumps

Code	Function	NPT	G
1	Air-Supply	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$1 / 4$ NPTF	G $1 / 4$
$2 A$	Vacuum - Auxiliary	G $1 / 8$ NPSF	
3	Exhaust	$1 / 4$ NPTF	G $1 / 4$

V80 Vacuum Pumps

${ }^{1}$ Pumps with 200 Nozzle Sets use STB38M Silencers.
${ }^{1}$ Pumps with 250 Nozzle Sets use STC12M ilencers.

Code	Function	$200-$ NPT	$200-\mathrm{G}$	$250-$ NPT	$250-\mathrm{G}$	
1	Air-Supply	$1 / 4$ NPTF	G $1 / 4$	$1 / 4$ NPTF	G $1 / 4$	
2	Vacuum	$3 / 8$ NPTF	G $3 / 8$	$3 / 8$ NPTF	G $3 / 8$	
2 A	Vacuum - Auxiliary	G $1 / 8$ NPSF				
3	Exhaust	$3 / 8$ NPTF	G $3 / 8$	$1 / 2$ NPTF	G $1 / 2$	

V90 Vacuum Pumps

${ }^{1}$ Pumps with 300 Nozzle Sets use STC12M Silencers.
${ }^{1}$ Pumps with 350 Nozzle Sets use STC12M-6 Silencers.

Weight: $0.73 \mathrm{Ibs}[331.0 \mathrm{~g}]$

Code	Function	NPT	G
1	Air-Supply	$3 / 8$ NPTF	G $3 / 8$
2	Vacuum	$1 / 2$ NPTF	G $1 / 2$
$2 A$	Vacuum - Auxiliary	G $1 / 8$ NPSF	
3	Exhaust	$1 / 2$ NPTF	G $1 / 2$

VX: V Series Vacuum Pumps w/ Automatic Blow-Off

Same performance as a standard V-series but with automatic quick-release blow-off module. Air supply to the pump fills a volume chamber via an integral quick exhaust valve.

When the pump air supply is turned off and pressure drops about 5 psi (0,3 bar), the quick exhaust valve shifts and passes the stored volume directly into the pump vacuum port to quickly dissipate system vacuum for a faster cycle time.

V10X

Storage Volume: $1.0 \mathrm{in}^{3}$ [16.4 ml]
Weight: 0.33 lbs [149.0 g]

V20X

Storage Volume: $1.0 \mathrm{in}^{3}$ [16.4 ml]
Weight: 0.43 lbs [195.0 g]

V80X
Storage Volume: 2.8 in 3 (45 mI)
Weight: $0.71 \mathrm{lbs}[322.0 \mathrm{~g}]$

V Series Performance - M Series

- High Flow
- 20 inHg Maximum Vacuum

V Series Performance - H Series

- High Vacuum
- 28 inHg Maximum Vacuum

V Series Performance - All Series

Vacuum Flow - SCFM

Model	Air Cons SCFM @ 80 PSI	$\begin{gathered} \text { Max Vac } \\ \text { inHg } \end{gathered}$	SCFM at Vacuum Level								
			3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg	27 inHg
60H	0.8	27	0.38	0.32	0.3	0.27	0.23	0.2	0.13	0.05	0.02
90H	1.7	26.7	0.7	0.6	0.4	0.35	0.3	0.21	0.17	0.06	0
100H	2.5	27.5	1.4	1.2	1	0.7	0.55	0.36	0.28	0.21	0.02
150H	4.7	26.7	2.1	1.8	1.4	1.2	0.9	0.66	0.37	0.22	0
200 H	7.9	26.7	4.3	3.5	2.8	2.1	1.3	0.72	0.43	0.15	0
250 H	13.4	27.5	7.1	6.1	5.1	4	2.9	2.1	1.4	0.35	0.12
300 H	20.0	27.5	12.9	11.3	9.2	7.3	5.6	4.1	2.6	0.7	0.1
350 H	27.0	27.5	14	12	10.2	7.7	5.9	4.2	3	1.2	0.14
60M	0.5	20	0.4	0.3	0.22	0.15	0.08	0.03	-	-	-
90M	1.8	20.2	0.73	0.52	0.45	0.42	0.33	0.12	0	-	-
100M	1.9	21.6	1.8	1.5	1.3	1	0.6	0.34	0.08	-	-
150M	2.9	20.8	2.7	2.3	1.8	1.1	0.6	0.34	0	-	-
200M	5.2	20	5.1	4.3	3.4	2.4	1.2	0.46	0	-	-
250M	8.6	19.2	8.9	7.2	5.3	3.2	1.2	0.24	0	-	-
300M	13.3	19.6	14.4	12	9.8	7.4	5.3	2.4	0	-	-
350M	20.4	22.4	18.4	15.9	13.5	11.2	7.9	4.6	1.7	-	-

$$
\text { SCFM } \times 28.32=\mathrm{nl} / \mathrm{m}
$$

Evacuation Time - sec / 1,000 in 3

Model	Air Cons SCFM @ 80 PSI	Max Vac inHg	SCFM at Vacuum Level								
			3 inHg	6 inHg	9 inHg	12 inHg	15 inHg	18 inHg	21 inHg	24 inHg	27 inHg
60H	0.8	27	15	30	51	75	103	136	183	246	410
90 H	1.7	26.7	3.5	13	17	29	48	79	135	255	-
100H	2.5	27.5	1.9	4.5	8.3	14	24	39	68	129	325
150H	4.7	26.7	1.2	2.9	5.4	9.3	15	25	43	82	-
200H	7.9	26.7	0.64	1.5	2.9	4.6	8.1	13	24	46	-
250 H	13.4	27.5	0.36	0.87	1.6	2.7	4.5	7.3	13	24	62
300 H	20.0	27.5	0.2	0.48	0.87	1.5	2.4	4	6.9	13	34
350 H	27.0	27.5	0.18	0.44	0.81	1.2	2.3	3.7	6.4	12	31
60 M	0.5	20	12.5	25.0	44	69	99	154	-	-	-
90M	1.8	20.2	3.4	12	17	28	46	76	-	-	-
100M	1.9	21.6	1.7	3.5	6.4	11	18	31	54	-	-
150M	2.9	20.8	0.93	2.3	4.2	7.3	13	22	-	-	-
200M	5.2	20	0.48	1.2	2.2	3.8	6.4	12	-	-	-
250M	8.6	19.2	0.29	0.69	1.3	2.3	4.1	7.2	-	-	-
300M	13.3	19.6	0.18	0.43	0.81	1.4	2.3	3.8	-	-	-
350M	20.4	22.4	0.14	0.34	0.64	1	1.7	2.8	4.9	-	-

$\sec / 1,000 \mathrm{in}^{3} \times 0.61=\sec / 1$

SM24-38: Compact Vacuum Pump

The SM24-38 is a multi-characteristic pump with three operating pressures. It is compact, light-weight, economical, maintenance free, energy efficient, and quiet. Made of brass nozzles and an anodized aluminum body, the SM24-38 has a high flow rate with a maximum air supply of 100 psi. With its metal construction and stainless steel fasteners, the SM24-38 is also a very rugged pump.

Weight: $0.35 \mathrm{lbs}[5.6 \mathrm{oz}]$

Muffled Exhaust

Code	Function	Ports
1	Air-Supply	G $1 / 8$ NPSF
2	Vacuum	$3 / 8$ NPS
$2 A$	Vacuum - Auxiliary	G $1 / 8$ NPSF

SM Series Performance

Vacuum Flow - SCFM

Variable Displacement Pumps
VDS vacuum pumps can provide over $20 " \mathrm{Hg}(68 \mathrm{kPa})$ and their straight through non-clog design is ideal for very dusty and dirty applications such as bag filling or handling ceramics or masonry products. The square body and two mounting holes makes the VDS pump easy to attach to any flat surface. An ST Straight Thru silencer will not accumulate debris and will pass it out with the exhaust air. For less critical applications where cost is more of an issue, a conventional AA silencer may be used.

	Model	Threads		Silencer ${ }^{1}$	
VDS- 150	150				
	150	(Blank)	NPT Threads	(Blank)	None
	200	-G	G Threads	-ST	ST Silencer
	250				
	375				

1150, 200, and 250 models use STA14M Silencers. 1375 models use STC12M Silencers.

MODEL	1 - Air-Supply	2 - Vacuum	3 - Exhaust	A	B	C	D	E	F	G	H	I	S
VDS-150	G 1/8 NPSF	$1 / 4$ \| G 1/4	1/4 \| G 1/4	$\begin{gathered} 1.38 \\ {[35.0]} \end{gathered}$	$\begin{gathered} 0.86 \\ {[21.8]} \end{gathered}$	$\begin{gathered} 1.25 \\ {[31.8]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.7]} \end{gathered}$	$\begin{gathered} 1.02 \\ {[25.9]} \end{gathered}$	$\begin{gathered} 0.84 \\ {[21.3]} \end{gathered}$	$\begin{gathered} 0.74 \\ {[18.8]} \end{gathered}$	$\begin{aligned} & 0.22 \\ & {[5.5]} \end{aligned}$	$\begin{gathered} 0.15 \\ {[3.8]} \end{gathered}$	$\begin{gathered} 2.65 \\ {[67.3]} \end{gathered}$
VDS-200	G 1/8 NPSF	1/4 \| G 1/4	1/4 \| G 1/4	$\begin{gathered} 1.38 \\ {[35.0]} \end{gathered}$	$\begin{gathered} 0.86 \\ {[21.8]} \end{gathered}$	$\begin{gathered} 1.25 \\ {[31.8]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.7]} \end{gathered}$	$\begin{gathered} 1.02 \\ {[25.9]} \end{gathered}$	$\begin{gathered} 0.84 \\ {[21.3]} \end{gathered}$	$\begin{gathered} 0.74 \\ {[18.8]} \end{gathered}$	$\begin{aligned} & 0.22 \\ & {[5.5]} \end{aligned}$	$\begin{gathered} 0.2 \\ {[5.1]} \end{gathered}$	$\begin{gathered} 2.65 \\ {[67.3]} \end{gathered}$
VDS-250	G 1/8 NPSF	1/4 \| G 1/4	1/4 \| G 1/4	$\begin{gathered} 1.38 \\ {[35.0} \end{gathered}$	$\begin{gathered} 0.86 \\ {[21.8]} \end{gathered}$	$\begin{gathered} 1.25 \\ {[31.8]} \end{gathered}$	$\begin{gathered} 3.81 \\ {[96.7]} \end{gathered}$	$\begin{gathered} 1.02 \\ {[25.9]} \end{gathered}$	$\begin{gathered} 0.84 \\ {[21.3]} \end{gathered}$	$\begin{gathered} 0.74 \\ {[18.8]} \end{gathered}$	$\begin{aligned} & 0.22 \\ & {[5.5]} \end{aligned}$	$\begin{aligned} & 0.25 \\ & {[6.3]} \end{aligned}$	$\begin{gathered} 2.65 \\ {[67.3]} \end{gathered}$
VDS-375	3/8 NPSF	G 1/2 NPSF	G 1/2 NPSF	$\begin{gathered} 1.72 \\ {[43.7]} \end{gathered}$	$\begin{gathered} 1.5 \\ {[38.1]} \\ \hline \end{gathered}$	$\begin{gathered} 1.75 \\ {[44.5]} \end{gathered}$	$\begin{gathered} 5.99 \\ {[152.0]} \\ \hline \end{gathered}$	$\begin{gathered} 1.32 \\ {[33.5]} \\ \hline \end{gathered}$	$\begin{gathered} 1.35 \\ {[34.3]} \\ \hline \end{gathered}$	$\begin{gathered} 0.98 \\ {[24.9]} \\ \hline \end{gathered}$	$\begin{array}{r} 0.26 \\ {[6.6]} \\ \hline \end{array}$	$\begin{aligned} & 0.38 \\ & {[9.5]} \\ & \hline \end{aligned}$	$\begin{gathered} 4.12 \\ {[104.6]} \\ \hline \end{gathered}$

Variable Displacement Pumps

Operation

Loosen the jam nut and turn the diffuser nozzle clockwise, by hand, until it contacts the inlet nozzle. With the work piece against the suction cup or holding fixture, supply regulated compressed air to the side air supply port and gradually rotate the diffuser nozzle to adjust the annular gap between the two nozzles until the desired vacuum level or vacuum flow is achieved. To minimize air consumption, use the lowest pressure air supply that will yield the desired results. Turning the diffuser too far open will suddenly cause a decrease in performance and this point will vary depending on the operating air pressure.

Ingested debris passes directly from end-to-end through the pump bore without any turns and without passing through the annular venturi created by the inlet and diffuser nozzles, so there is no opportunity for clogging as long as the pump bore is large enough to pass the largest debris particle. As the pump bore size is increased, it can also generate more vacuum flow to overcome porosity and leakage.

Performance

Model	Max Vac	Air Consumption vs Vacuum Level @ 80 PSI				
		5 inHg	10 inHg	15 inHg	20 inHg	25 inHg
VDS-150		1.3	1.7	2.4	3.2	4.5
VDS-200		2.4	3.7	4.7	6	6.8
VDS-250		4	6	8.3	9.7	12
VDS-375		6.2	11.5	17	21	29

Air-Amplifiers \& Transfer Pumps Section 15

FDCD LISA

Air-Amplifiers

CD-style pumps use the Coanda effect to draw in large volumes of ambient air in relation to the small amount of compressed air consumed.

Applications include: blow-drying, ventilation and handling highly porous but lightweight parts.

Operation

The Coanda principle employs a nozzle that causes high velocity compressed air to cling to its shaped airfoil wall. Ambient air is drawn into the inlet and down into the center of the vortex formed by the Coanda nozzle so that the discharge air flow at the exhaust is much greater than the
compressed air consumption.
Loosen the jam nut and turn the Coanda nozzle clockwise, by hand, until it stops, indicating the throat is fully closed. Supply regulated compressed air to the side air supply port and gradually rotate the Coanda nozzle to increase the throat gap until the desired vacuum level or discharge flow is achieved. To minimize air consumption, use the lowest pressure air supply that will yield the desired results. Higher air pressure will increase the airflow but will also increase air consumption. Turning the Coanda nozzle too far open will suddenly cause air flow to reverse direction and the pump will not perform properly.

Model	Internal Diameter in [mm]	Air-Supply @ 80 PSI (5.5 bar)		
		Input Flow SCFM [NI/min]	Output Flow SCFM [N1/min]	Velocity ft / s [m/s]
$\begin{aligned} & \text { CD-500HG } \\ & \text { CD-500H } \end{aligned}$	0.5 [13]	9 [255]	75 [2124]	910 [277]
		5 [142]	42 [1189]	530 [162]
		3 [85]	22 [623]	265 [81]

CD-500H

All performance data presented is a representation of production pumps but is not a guarantee due to variations in local barometric pressure and of mass produced components.

CD-500HG

Transfer Pumps

Direct Transfer Pumps use high velocity compressed air to generate a vacuum in the inlet of a smooth bore tubular body to drawn in bulk dry goods and then convey it in a turbulent air stream through a hose attached to the discharge end of the pump. Plastic pellets, powders, beans, peas, sawdust, and continuous fabric trimmings are only a few examples of the numerous items that can be transferred.

These versatile pumps can also be used to convey small parts from an assembly station at much lower cost than a pick and place device. Select a pump inner diameter that is a little larger than the part's outer diameter then provide generous bends in the discharge hose for free passage of parts. For longer parts, select a pump (and discharge hose) diameter large enough to pass the part diameter but not large enough for the part length. This method will eliminate end-over-end tumbling that can damage parts. At the hose discharge end, direct the parts against hanging curtains or foam rubber to decelerate parts.

Vacuum flow rate, and thus material transfer rate, is easily controlled by simply changing the compressed air supply pressure. Higher air pressure increases the transfer rate. When shutting the pump off, it is good practice to let the pump blow air for a long enough period to allow all parts in the discharge hose to exit.

Principle Of Operation

Compressed air is supplied to the body port and passes through an annular ring to several nozzles leading into the transfer tube at an angle. The nozzles concentrate the air stream so that it increases to maximum velocity as it passes through the nozzle throat and into the pump transfer tube. The air jets meet in the center and create a powerful vacuum at the tube inlet and a turbulent, spiraling flow at the discharge end. Large quantities of ambient air are ingested along with the material being transferred and, combined with nozzle air, helps to move material through the discharge hose.

D-Series Material Transfer Pumps

Model	A Thraat I.D. in $[\mathrm{mm}]$	B Collar O.D. in $[\mathrm{mm}]$	C Tube O.D. in $[\mathrm{mm}]$	D Length in $[\mathrm{mm}]$	E Offset in $[\mathrm{mm}]$	F Collar Width in [mm]	T Air-Supply Threads
D2-3	$0.25[6.35]$	$1.25[31.8]$	$0.75[19.1]$	$3.5[88.9]$	$0.75[19.1]$	$1.0[25.4]$	$1 / 8$
D3-3	$0.375[9.5]$	$1.25[31.8]$	$0.75[19.1]$	$3.5[88.9]$	$0.75[19.1]$	$1.0[25.4]$	$1 / 8$
D3-6	$0.375[9.5]$	$1.25[31.8]$	$0.75[19.1]$	$3.5[88.9]$	$0.75[19.1]$	$1.0[25.4]$	$1 / 8$
D5-3	$0.5[12.7]$	$1.5[38.1]$	$1.0[25.4]$	$5.5[140]$	$1.0[25.4]$	$1.25[31.8]$	$1 / 4$
D5-6	$0.5[12.7]$	$1.5[38.1]$	$1.0[25.4]$	$5.5[140]$	$1.0[25.4]$	$1.25[31.8]$	$1 / 4$
D7-3	$0.75[19.1]$	$2.0[50.8]$	$1.25[31.8]$	$7.5[191]$	$1.5[38.1]$	$2.0[50.8]$	$3 / 8$
D7-6	$0.75[19.1]$	$2.0[50.8]$	$1.25[31.8]$	$7.5[191]$	$1.5[38.1]$	$2.0[50.8]$	$3 / 8$
D10-3	$1.0[25.4]$	$2.25[57.2]$	$1.5[38.1]$	$7.5[191]$	$1.5[38.1]$	$2.0[50.8]$	$3 / 8$
D10-6	$1.0[25.4]$	$2.25[57.2]$	$1.5[38.1]$	$7.5[191]$	$1.5[38.1]$	$2.0[50.8]$	$3 / 8$
D15-3	$1.5[38.1]$	$2.75[69.9]$	$2.0[50.8]$	$7.5[191]$	$1.5[38.1]$	$2.0[50.8]$	$3 / 8$
D15-6	$1.5[38.1]$	$2.75[69.9]$	$2.0[50.8]$	$7.5[191]$	$1.5[38.1]$	$2.0[50.8]$	$3 / 8$
D20-3	$2.0[50.8]$	$3.25[82.6]$	$2.5[63.5]$	$7.5[191]$	$1.5[38.1]$	$2.0[50.8]$	$3 / 8$
D20-6	$2.0[50.8]$	$3.25[82.6]$	$2.5[63.5]$	$7.5[191]$	$1.5[38.1]$	$2.0[50.8]$	$3 / 8$

Model	$\begin{aligned} & \text { I.D. } \\ & \text { in [mm] } \end{aligned}$	Air Velocity $\mathrm{ft} / \mathrm{s}[\mathrm{m} / \mathrm{s}]$	Vacuum Flow SCFM [NI/m]	Vacuum Level $\mathrm{inHg}[\mathrm{mmHg}]$	Air Consumption SCFM (NI/m)	
					@ 40 psi	@ 80 psi
D2-3	0.25 [6.35]	490 [149]	10 [283]	8 [203]	3.1 [87.8]	6 [170]
D3-3	0.375 [9.5]	328 [100]	15 [425]	6 [152]	3.5 [99.1]	6 [170]
D3-6	0.375 [9.5]	393 [120]	18 [510]	8 [203]	5.8 [164]	10 [283]
D5-3	0.5 [12.7]	306 [93.3]	25 [708]	3 [76]	5.2 [147]	9 [255]
D5-6	0.5 [12.7]	362 [110]	30 [850]	10 [254]	14 [396]	24 [680]
D7-3	0.75 [19.1]	272 [82.9]	50 [1416]	4.3 [109]	14 [396]	24 [680]
D7-6	0.75 [19.1]	326 [99.4]	60 [1699]	8 [203]	28 [793]	48 [1359]
D10-3	1.0 [25.4]	229 [69.8]	75 [2124]	3 [76]	14 [396]	24 [680]
D10-6	1.0 [25.4]	290 [88.4]	95 [2690]	5.8 [147]	28 [793]	48 [1359]
D15-3	1.5 [38.1]	224 [68.3]	165 [4672]	1.3 [33]	14 [396]	24 [680]
D15-6	1.5 [38.1]	272 [82.9]	200 [5663]	2.5 [64]	28 [793]	48 [1359]
D20-3	2.0 [50.8]	183 [55.8]	240 [6796]	0.8 [20]	14 [396]	24 [680]
D20-6	2.0 [50.8]	229 [69.8]	300 [8495]	1.5 [38]	28 [793]	48 [1359]

End of Arm Tooling (EOAT) Section 16

FDCD L15A

EMAT Level Compensators

Gripper Fingers

Nipper Bodies

T-Slot Receivers

Modular Automation Tooling

Modular automation tooling (EMAT) provides an efficient way to construct automation or robotic tools with minimal design time. Rugged, lightweight anodized aluminum components adjust easily to conform to the work piece then are securely tightened with standard hand tools.

Typically, a tool is constructed with a horizontal beam of round tubing or t-slot, structural extrusion and several side spars for attaching mono-grip, orbital arms, wrists, and hands with appropriately selected options that provide virtually unlimited design freedom.

EMAT systems may be set up using a large, centralized vacuum pump to supply several vacuum cups, but much greater system reliability can be achieved via the redundancy of a discrete system. A discrete system with small, independent, compressed air powered vacuum pumps at each vacuum cup is the preferred method. With a discrete system, a poor seal at one vacuum cup can't affect the vacuum level at other vacuum cups. A discrete system also allows splitting the system into several, independently controlled zones allowing for a wider variety of part sizes and shapes to be efficiently handled.

Modular automation tooling with EDCO USA products provides simplicity, adjustability, rigidity, serviceability, energy conservation, and cost-effectiveness in readily available components.

Energy conservation is provided by efficient high-flow coaxial ejector technology which is also capable of passing more debris than competitive designs without clogging. In addition, there is no flap valve to stick and affect performance.

High-efficiency sequence valve remains fully open during blow-off so chattering, humming, and squealing noises are eliminated. Compressed air consumption is reduced significantly by using lower air pressure during the blow-off mode.

An internal orifice balances air flow so that several VacLoc blow-off ports may be supplied and controlled by one solenoid valve.

EMAT tooling is easily reconfigurable to meet changing application requirements.

Fast and simple single-bolt arm adjustment (mono-clamp) and tri-arc grip provides superior positional security via higher clamping forces.

Modular construction allows swapping hands, changing arm lengths, changing suction cups or duty-attachments and repositioning or adding slide-on or clamp-on orbital arms to reconfigure the tool whenever necessary.

Unlimited multi-axis arm positioning - configure wrists with either an orbital apple-core pin or a ball swivel for greater mobility to conform to part contours.

VacLoc

Fail-safe operation is provided by integral VacLoc valves in leak-free systems. If the vacuum source is lost, or is purposely interrupted as in an Energy-Saving system, the VacLoc will trap vacuum for an indefinite time period so the load can be lowered to a safe position.

Modular VacLoc vacuum check valve and sequence blow valve are installed in a cartridge body for perfect alignment and valve seats are electroless-nickel plated for long life. A one-piece work-attachment body eliminates secondary vacuum leak paths and the potential for loosening or separation during operation.

Coaxial Venturi Technology

Proprietary EMAT coaxial ejector vacuum pumps are optimized to provide high vacuum flow and reduce compressed air consumption. There are no flap-valves to swell up or stick due to ingesting die lubricants and the simplified design is tolerant of debris.

EMAT Arm Features

Improved technology provides greater arm positional security.
1.) A spherical nut nests into a spherical pocket to eliminate misalignment and resultant stress concentration that can cause joints to loosen.
2.) A larger hex wrench socket allows greater torque to be applied.
3.) A nut and stud configuration more efficiently translates tightening torque into stud tension than a long cap and screw do where much of the torque is absorbed by twisting off the long screw shank.
4.) Clamp jaws are relieved to form flexible hinges to greatly reduce the spring-back effect, significantly increasing the available clamp force.
5.) Segmented clamp jaws provide a secure tri-arc grip superior to the weaker group produced by the two-point-contact grip of competitive units.
6.) Hardened spacers having raised radial micro-teeth are installed at both ends of the arm extension rod to mechanically interlock the arm components, providing rational resistance and positional security.
7.) A larger pin retainer diameter positions the stud farther from the clamp centerline and the increased leverage produces a higher clamping force.

EMAT System Explanation

An EMAT arm is analogous to a human arm. The shoulder joint is either a slide-on or clamp-on orbital connection to a round structural tube. The arm extends from the shoulder to a wrist which can provide either an orbital (apple-core pin) or a swivel (ball) connection to the hand. The hand consists of a suction cup plus a work-attachment that can be configured to perform several functions such as admitting or producing vacuum, additional compliance (level compensator) or greater control via VacLoc or energy-saving controls.

Selection Guide

Begin at work-piece and select components in sequence back to the main beam.
1.) Select a vacuum cup style and size based on the weight of the work-piece, area available, and work-piece surface. For cup style, refer to the cup selection guide.
2.) Select a work-attachment based on your system requirements for function and control.
3.) Select either an orbital apple-core pin wrist (A) or a swivel ball wrist (B).
4.) Select the arm length based on how far the vacuum cup will be positioned away from the mounting spar.
5.) Select a shoulder joint to attach to the spar. The slide-on style costs less but isn't as convenient for reconfiguring the tool. The hinged, clamp-on style can be mounted or added anywhere along the spar length without disturbing other arms.

Components selected in steps 1 through 5 can be coded into a single, convenient part number. See "How To Order" for instructions.
6.) Select spar tubing diameter and lengths based on where vacuum cups must be positioned in the tool layout.
7.) Select appropriate structural adapters to connect spars to the main beam.

Vacuum Connection w/ Mount

Our vacuum connections provide a low-profile solution for connecting a vacuum source to your work piece while also being compatible with our EMAT line of arms and tooling.

Apple Core Pin Weight: 0.17 lb [77.1 g]

Example: V38F-A w/ C10X2A

Ball Swivel
Weight: $0.22 \mathrm{lb}[99.2 \mathrm{~g}$]

Example: V38F-B w/ S10X1B

Low-Profile Vacuum Connection w/ Release

Includes a reliease (blow-off) sequence valve, provides for mounting a vacuum cup and for connecting a vacuum source. Can be configured with or without a vacuum pump. When used with the direct mount (standard) option, the 3/8 Vacuum Port works great for mounting to our EMAT Level Compensators.

Ball Swivel Mount Weight: 0.39 lb [178.5 g]

Code	Function	NPT	G
V	Vacuum Source	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$1 / 4$ NPTF	G $1 / 4$
2A	Vacuum - Auxiliary	$3 / 8$ NPSF	G $3 / 8$
PR	Pilot Signal - Release	M5X0.8 (10-32 UNF)	

Low-Profile Vacuum Pump w/ Release

Includes a vacuum pump with release (blow-off) sequence valve, provides for mounting a vacuum cup. When used with the direct mount (standard) option, the 3/8 Vacuum Port works great for mounting to our EMAT Level Compensators.

See ER Series Vacuum Pumps section for performance data.

Basic
Weight: $0.29 \mathrm{lb}[132.7 \mathrm{~g}]$

Apple Core Pin Mount
Weight: 0.36 lb [161.3 g]

Ball Swivel Mount
Weight: $0.40 \mathrm{lb}[183.5 \mathrm{~g}]$

VacLoc

Vacloc valves provide fail-safe operation in leak-free systems. If the vacuum source is lost, or is purposefully interrupted, the Vacloc will trap vacuum for an indefinite time period so the load can be lowered to a safe position.

Modular Vacloc valves include a vacuum check valve and a sequence release valve installed in a cartridge body for perfect alignment. Valve seats are electroless-nickel plated to allow for long life. A one-piece work-attachment body eliminates secondary vacuum leak paths and the potential for loosening or separation during operation.

A high-efficiency sequence valve remains fully open during blow-off so chattering, humming, and squealing noises are eliminated. Compressed air consumption is reduced significiantly by using lower air-pressure during the blow-off mode. An internal orifice balances air-flow so that several Vacloc blow-off ports may be supplied and controlled by one solenoid valve.

Vaclocs can also be ordered with or without an integrated ER Series venturi.
See ER Series Vacuum Pumps section for performance data.

With the addition of the PQR option, our VacLoc models and part numbers have changed. Please confirm that your part number is accurate before placing an order.

VacLoc

The VacLoc is a combination modular vacuum check valve and a sequence blow valve incorporated in a perfectly aligned, one-piece cartridge body featuring electroless-nickel plated valve seats for long life. An internal orifice provides balanced blow-off air flow so that several unites can be supplied and controlled by one solenoid valve.

Code	Function	NPT	G
V	Vacuum Source	$1 / 8$ NPTF	
R	Release Source	$1 / 8$ NPTF	
2	Vacuum	$3 / 8$ NPSF	G 3/8
2A	Vacuum - Auxiliary	G $1 / 8$ NPSF	

VacLoc w/ Integral Vacuum Pump

The VLP includes all the VacLoc features plus a coaxial ejector vacuum pump cartridge that is integrated into a compact single-piece body. Response time is greatly improved by minimizing flow paths and system volume. Reliability is improved by eliminating external plumbing and potential leak points.

See ER Series Vacuum Pumps section for performance data.

Weight: $0.49 \mathrm{lb}[219.9 \mathrm{~g}]$

Apple Core Pin Mount

Weight: 0.57 lb [258.8 g]

Ball Swivel Mount

Weight: 0.61 lb [275.5 g]

VacLoc Pilot Controlled Quick Release (PQR) Option

The pilot controlled quick release option for VacLocs work the same as the normal models except compressed-air is not used to release the work object. Using compressed air to release the work object increases air consumption by quite a bit compared to the amount used to generate vacuum. The PQR option uses a valve which is actuated by a compressed air signal that can be connected to all PQR valves in a system without concern for balancing pilot lines. The only compressed air flow is a small amount to pressurize the pilot lines to all PQR valves. The pilot signal shifts the PQR valve which opens a large passage from the vacuum port to atmosphere to immediately dissipate vacuum and release the work object.

The PQR option is available for VacLoc's with or without an integral pump.
See pages 16:10 and 16:11 for How To Order chart and additional details.
See ER Series Vacuum Pumps section for performance data.

Code	Function	NPT	G
1	Air-Supply	$1 / 8$ NPTF	
2	Vacuum	$3 / 8$ NPSF	G 3/8
2 A	Vacuum - Auxiliary	G $1 / 8$ NPSF	
3	Exhaust	G $1 / 4$	
PR	Pilot Signal, Release	1/8 NPTF	

VacLoc, Slim Body

The slim body VacLoc operates in the exact same manner as the normal VacLoc. The only differences between the two are size and available options.

Weight: $0.33 \mathrm{Ib}[151.6 \mathrm{~g}]$

Code	Function	NPT	G
V	Vacuum Source	$1 / 4$ NPTF	G $1 / 4$
R	Release Source	$1 / 4$ NPTF	G $1 / 4$
2	Vacuum	$3 / 8$ NPSF	G $3 / 8$

Level Compensators, EMAT Style

A level compensator is a spring-loaded shaft that can be adjusted to compensate for differences in height between work-piece features. The spring action also provides a soft-touch feature to eliminate shocks and make exact pick positions less critical.

When properly installed, all level compensators will be fully extended when lifting and supporting the work-piece. If a level compensator is not fully extended, it is not supporting any of the workload. The 30 mm diameter sleeve body provides
 a long adjustment length for this purpose. A retaining o-ring is used to prevent slipping through the mount.

To mount any vacuum connection, vacuum pump, or VacLoc directly to an EMAT level compensator using the $3 / 8^{\prime \prime}$ vacuum port, use two wrenches to gently remove the elbow connection at the top of the level compensator exposing a $3 / 8$ " male connection.

Part Number	A Length in $[\mathrm{mm}]$	B Sleeve Length in $[\mathrm{mm}]$	C Stroke in $[\mathrm{mm}]$	D Coupler in $[\mathrm{mm}]$	Weight $\mathrm{lb}[\mathrm{g}]$
LC2538M	$5.13[130.0]$	$2.45[62.2]$	$1.00[25.0]$	$0.50[12.7]$	$0.42[189.0]$
LC2512M	$5.13[130.0]$	$2.45[62.2]$	$1.00[25.0]$	$0.50[12.7]$	$0.42[189.0]$
LC5038M	$7.88[200.0]$	$4.20[107.0]$	$2.00[50.0]$	$0.50[12.7]$	$0.60[274.0]$
LC5012M	$7.88[200.0]$	$4.20[107.0]$	$2.00[50.0]$	$0.50[12.7]$	$0.60[274.0]$

Level Compensator Mounts

We offer four types of EMAT level compensator mounts. Each mount features an anodized aluminum mount with stainless steel fasteners. With a variety of mounting options and a very simple installation, our level compensator mounts work perfectly and easily with our EMAT style level compensators.

LCM30A: Level Compensator Apple Core Pin Mount

Weight: 5.45 oz [154.4 g]

LCM30B: Level Compensator Ball Swivel Mount

Weight: $6.23 \mathrm{oz}[176.5 \mathrm{~g}]$

Level Compensator Mounts

LCM30E: Level Compensator Extrusion Mount

LCM30S10: Level Compensator 1.0" Slide-On Mount

Weight: 6.47 oz [183.5 g]

Level Compensator Mounts

LCM18: Level Compensator Mount, M16x1.0

Level compensator mounts make it easy to mount level compensators to clamp blocks.

LCM10: Level Compensator Mount, G 1/8
Level compensator mounts make it easy to mount level compensators to clamp blocks.

Weight: 0.58 oz [16.38 g]

Clamp-On Arm w/ Apple Core Pin Receiver

1 in Tube

1.5 in Tube

	C10X1A	C10X2A	C10X4A	C10X6A	C15X1A	C15X2A	C15X4A	C15X6A
A: in $[\mathrm{mm}]$	$2.35[59.7]$	$3.35[85.1]$	$5.35[136.0]$	$7.35[187.0]$	$2.35[59.7]$	$3.35[85.1]$	$5.35[136.0]$	$7.35[187.0]$
B: in $[\mathrm{mm}]$	$3.84[97.5]$	$4.84[123.0]$	$6.84[174.0]$	$8.84[225.0]$	$3.97[101.0]$	$4.97[126.0]$	$6.97[177.0]$	$8.97[228.0]$
Weight: $\mathrm{lb}[\mathrm{g}]$	$0.74[336.0]$	$0.82[370.0]$	$1.02[463.0]$	$1.22[555.0]$	$0.78[354.0]$	$0.85[387.0]$	$1.06[480.0]$	$1.26[572.0]$

Clamp-On Arm w/ Ball Swivel Receiver

1 in Tube

1.5 in Tube

	C10X1B	C10X2B	C10X4B	C10X6B	C15X1B	C15X2B	C15X4B	C15X6B
A: in $[\mathrm{mm}]$	$2.35[59.7]$	$3.35[85.1]$	$5.35[136.0]$	$7.35[187.0]$	$2.35[59.7]$	$3.35[85.1]$	$5.35[136.0]$	$7.35[187.0]$
B: in $[\mathrm{mm}]$	$4.09[104.0]$	$5.09[129.0]$	$7.09[180.0]$	$9.09[231.0]$	$4.21[107.0]$	$5.21[132.0]$	$7.21[183.0]$	$9.21[234.0]$
Weight: $\mathrm{lb}[\mathrm{g}]$	$1.03[469.0]$	$1.11[503.0]$	$1.31[595.0]$	$1.52[687.0]$	$1.07[487.0]$	$1.15[522.0]$	$1.35[613.0]$	$1.56[705.0]$

Slide-On Arm w/ Apple Core Pin Receiver

1 in Tube

1.5 in Tube

	C10X1B	C10X2B	C10X4B	C10X6B	C15X1B	C15X2B	C15X4B	C15X6B
A: in $[\mathrm{mm}]$	$2.35[59.7]$	$3.35[85.1]$	$5.35[136.0]$	$7.35[187.0]$	$2.35[59.7]$	$3.35[85.1]$	$5.35[136.0]$	$7.35[187.0]$
B: in $[\mathrm{mm}]$	$3.73[94.7]$	$4.73[120.0]$	$6.73[171.0]$	$8.73[222.0]$	$3.98[101.0]$	$4.98[126.0]$	$6.98[177.0]$	$8.98[228.0]$
Weight: $\mathrm{lb}[\mathrm{g}]$	$0.52[235.0]$	$0.60[270.0]$	$0.80[362.0]$	$1.00[454.0]$	$0.62[281.0]$	$0.70[317.0]$	$0.90[408.0]$	$1.10[499.0]$

Slide-On Arm w/ Ball Swivel Receiver

1 in Tube

1.5 in Tube

	C10X1B	C10X2B	C10X4B	C10X6B	C15X1B	C15X2B	C15X4B	C15X6B
A: in $[\mathrm{mm}]$	$2.35[59.7]$	$3.35[85.1]$	$5.35[136.0]$	$7.35[187.0]$	$2.35[59.7]$	$3.35[85.1]$	$5.35[136.0]$	$7.35[187.0]$
B: in $[\mathrm{mm}]$	$3.97[101.0]$	$4.97[126.0]$	$6.97[177.0]$	$8.97[228.0]$	$4.22[107.0]$	$5.22[133.0]$	$7.22[183.0]$	$9.22[234.0]$
Weight: $\mathrm{lb}[\mathrm{g}]$	$0.81[368.0]$	$0.89[403.0]$	$1.09[495.0]$	$1.29[587.0]$	$0.84[379.0]$	$0.91[414.0]$	$1.12[506.0]$	$1.32[599.0]$

Cross Clamp Blocks

EDCO USA Cross Clamp Blocks are provided in a number of sizes to easily help you to construct the needed structure for your system. The multiple sizes allow for many different configurations of tubing of varying sizes.

When building part numbers, Tube $\varnothing 1$ will always be the larger diameter.

Example: CLM7550, CLM1050, CLM1075

Example: Tubing not for sale.

	A in $[\mathrm{mm}]$	B1 in $[\mathrm{mm}]$	C1 in $[\mathrm{mm}]$	D1 in $[\mathrm{mm}]$	B2 in $[\mathrm{mm}]$	C 2 in $[\mathrm{mm}]$	D2 in $[\mathrm{mm}]$	Weight oz $[\mathrm{g}]$
CLM5050*	$2.00[50.8]$	$0.69[17.5]$	$0.75[19.1]$	$0.51[12.9]$	$1.31[33.4]$	$0.75[19.1]$	$0.51[12.9]$	$1.39[39.5]$
CLM7550	$2.25[57.2]$	$0.69[17.5]$	$0.75[19.1]$	$0.51[12.9]$	$1.44[36.5]$	$1.00[25.4]$	$0.76[19.3]$	$1.87[53.1]$
CLM7575	$2.50[63.5]$	$0.81[20.7]$	$1.00[25.4]$	$0.76[19.3]$	$1.69[42.9]$	$1.00[25.4]$	$0.76[19.3]$	$2.57[72.9]$
CLM1050	$2.50[63.5]$	$0.69[17.5]$	$0.75[19.1]$	$0.51[12.9]$	$1.56[39.7]$	$1.25[31.8]$	$1.01[25.6]$	$2.37[67.2]$
CLM1075	$2.88[73.0]$	$0.88[22.2]$	$1.00[25.4]$	$0.76[19.3]$	$1.88[47.6]$	$1.25[31.8]$	$1.01[25.6]$	$3.55[100.6]$
CLM1010	$3.00[76.2]$	$0.94[23.8]$	$1.25[31.8]$	$1.01[25.6]$	$2.06[52.4]$	$1.25[31.8]$	$1.01[25.6]$	$4.65[131.7]$

[^3]
Cross Clamp Blocks (OLD STYLE)

CB1010: Clamp Block for 1 in Tubes

CB1515: Clamp Block for 1.5 in Tubes

Clamp Mount Blocks

EDCO USA Clamp Mount Blocks come with a tubing clamp on one end and several $1 / 8$ " NPSF connections on the other.

CM505: Clamp Block Mount for 0.5 in Tubes
1/2" Tube Clamp with 1/8 NPSF Connections (Qty 5)

Weight: 1.23 oz [35.0 g]

CM759: Clamp Block Mount for 0.75 in Tubes
3/4" Tube Clamp with $1 / 8$ NPSF Connections (Qty 9)

Weight: 2.48 oz [70.2 g]

Parallel Clamp Mounts

Parallel Clamp Mounts are the perfect solution when you need to mount two tubes in parallel.

	A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	D in $[\mathrm{mm}]$	E in $[\mathrm{mm}]$	Weight oz $[\mathrm{g}]$
PCLM5050*	$2.63[66.7]$	$0.75[19.1]$	$1.25[31.8]$	$0.50[12.8]$	$0.75[19.1]$	$1.79[50.8]$
PCLM7575	$4.13[104.8]$	$1.00[25.4]$	$2.50[63.5]$	$0.75[19.1]$	$0.75[19.1]$	$3.08[87.4]$
PCLM1010	$4.63[117.5]$	$1.25[31.8]$	$2.75[69.9]$	$1.00[25.4]$	$0.75[19.1]$	$4.20[118.9]$

*PCLM5050 screw heads protude by 0.07 [1.8].

Flanged Clamps (Horizontal)

Horizontal Flanged Clamps give the base needed to build your end of arm tooling.

	Tube \varnothing				
FCH				100	
	75	$3 / 4 "$ Tube			
75 L	$3 / 4 "$ Tube				
	100	$1 "$ Tube			

	A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	D in $[\mathrm{mm}]$	E in $[\mathrm{mm}]$	F in $[\mathrm{mm}]$	Weight oz $[\mathrm{g}]$
FCH75	$2.00[50.8]$	$1.50[38.1]$	$2.25[57.2]$	$1.75[44.5]$	$1.38[34.9]$	$0.76[19.3]$	$4.95[140.3]$
FCH75L	$2.25[57.2]$	$1.75[44.5]$	$2.25[57.2]$	$1.75[44.5]$	$1.38[34.9]$	$0.76[19.3]$	$5.50[156.0]$
FCH100	$2.00[50.8]$	$1.50[38.1]$	$2.49[63.2]$	$2.00[50.8]$	$1.68[42.7]$	$0.76[19.3]$	$5.56[157.6]$

Example (Not For Sale)

Flanged Clamps (Horizontal, Round)

Horizontal Flanged Clamps give the base needed to build your end of arm tooling. The round clamps provide the same function with a rounded base.

Example (Not For Sale)

FCH50R: Flanged Clamp (Horizontal, Round)

FCH75R : Flanged Clamp (Horizontal, Round)

FCH100R : Flanged Clamp (Horizontal, Round)

FCV75: Flanged Clamps (Vertical)

EDCO USA Flanged Clamps give the base needed to build your end of arm tooling structure. Vertical Flanged Clamps offer the same quality and function as the Horizontal Flaned Clamps.

Weight: 5.08 oz [144.0 g]

Swivel-Ball Mounts

Swivel-Ball Mounts give a degree of movement when mounting tubing. One end has clearance for two M5 socket head cap screws while the other end is fitted with a machined aluminum swivel-ball for mounting tubing.

	Tube Size		
SMB		75	
	50	$\varnothing 1 / 2 "$ Tube	
75	$\varnothing 3 / 4 "$ Tube		

	A			
	An $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	Weight oz $[\mathrm{g}]$
SMB50	$1.70[43.2]$	$0.88[22.2]$	$0.50[12.8]$	$1.55[43.9]$
SMB75	$1.95[49.5]$	$0.98[24.8]$	$0.75[19.1]$	$1.70[48.2]$

Swivel-Gripper Mounts

Swivel-Gripper Mounts combine the functionality of our Swivel-Ball Mounts and the flexibility of our Stand-Off Mounts with a Mount Plate for a complete assembly.

	A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	Weight oz $[\mathrm{g}]$
SGM50	$0.88[22.2]$	N/A	$0.50[12.8]$	$3.29[93.2]$
SGM50-50	$1.38[34.9]$	$0.50[12.8]$	$0.50[12.8]$	$3.79[107.5]$
SGM50-125	$2.13[54.0]$	$1.25[31.8]$	$0.50[12.8]$	$4.58[130.0]$
SGM75	$0.88[22.2]$	N/A	$0.75[19.1]$	$3.44[97.6]$
SGM75-50	$1.38[34.9]$	$0.50[12.8]$	$0.75[19.1]$	$3.94[111.8]$
SGM75-125	$4.74[134.3]$	$1.25[31.8]$	$0.75[19.1]$	$4.74[134.3]$

Stand-Off Mounts (Spacers)

Stand-Off Mounts provide a great deal of flexibility when using multiple EOAT components together. We use our Stand-Off Mounts with Swivel-Ball Mounts and Nipper Mounts to give us a wide variety of mounting options.

SP-50: Stand-Off Mount, 1/2" Height

SP-125: Stand-Off Mount, 1-3/4" Height

Weight: 0.97 oz [27.5 g]

SMB-GP: Mount Plate

Our mount plate is a simple anodized aluminum machine plate with two M5 thru holes for mounting other pieces of EOAT. We use these with our swivel mounts and spacers to create a versatile mount utilizing a few, simple pieces.

Weight: 1.47 oz [41.5 g]

Post-Style Gripper Mounts

Our Post-Style Gripper Mounts work well with a variety of our clamp mounts when you'd like to mount to a plate rather than use tubing.

PGM50R: Post Gripper Mount w/ Ø 1/2" Post

PGM75R: Post Gripper Mount w/ Ø 1/2" Post

Wrist Clamps

Made of anodized aluminum, Wrist Clamps are a great way to mount two pieces of tubing (same \varnothing) at a 90° angle.

Weight: 1.81 oz [51.4 g]

	A 	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	D in $[\mathrm{mm}]$
WC5050	$1.63[41.3]$	$1.63[41.3]$	$0.75[19.1]$	$0.51[12.9]$
WC7575	$1.73[43.9]$	$1.73[43.9]$	$1.00[25.4]$	$0.76[19.3]$
WC1010	$1.98[50.3]$	$1.98[50.3]$	$1.25[31.8]$	$1.01[25.6]$

XCLM75: Extrusion Clamp Mounts

An anodized aluminum clamp with stainless steel fasteners is perfect for mounting tubing to an extrusion.

Fits 1.00 in [25 mm] extrusion size.

Weight: 1.35 oz [38.3 g]

Clamp Blocks \& Mounts

E10: Extrusion Mount Clamp Block

Fits 1-1/2 in or 40 mm Extrusions.
M8X45 Socket Head Cap Screws (2) and M8 T-Nuts (2) included.

Weight: 0.54 lb [246.0 g]

M3A: 3rd Axis Mount

Weight: $0.30 \mathrm{lb}(137.0 \mathrm{~g})$

Height Adjusters

AM38F: 3/8 NPTF, G 1/8 NPSF

3/8-18 NPTF

	AM38F-2	AM38F-3	AM38F-45	AM38F-8
A: in $[\mathrm{mm}]$	$2.75[69.9]$	$3.75[95.3]$	$5.25[133.0]$	$8.75[222.0]$
B: in $[\mathrm{mm}]$	$2.00[50.8]$	$3.00[76.2]$	$4.50[114.0]$	$8.00[203.0]$
Weight: $\mathrm{lb}[\mathrm{g}]$	$0.14[65.3]$	$0.16[73.0]$	$0.19[85.3]$	$0.25[113.0]$

AM12F: G 1/2 NPSF, $3 / 8$ NPTF

	AM12F-3	AM12F-6	AM12F-8
A: in $[\mathrm{mm}]$	$3.86[98.0]$	$6.86[174.0]$	$8.86[225.0]$
B: in $[\mathrm{mm}]$	$3.00[76.2]$	$6.00[152.0]$	$8.00[203.0]$
Weight: $\mathrm{lb}[\mathrm{g}]$	$0.34[156.0]$	$0.43[193.0]$	$0.48[218.0]$

Gripper Fingers

Pneumatic Finger Grippers with spring returns are used to secure parts at the edge.

The GRF20-95 and GRF30-95 provide a full 95° reach and are typically used with an edge clamp

GRF20-95: $\mathbf{9 5}^{\circ}$ Gripper Finger, Size 20
Weight: 2.14 oz [60.8 g]

GRF30-95: $\mathbf{9 5}^{\circ}$ Gripper Finger, Size 30
Weight: 6.45 oz [182.9 g]

Gripper Fingers

Pneumatic Finger Grippers with spring returns are used to secure parts at the edge.

The GRF20-35 and GRF30-35 provide a full 35° reach and are typically used with an edge clamp

GRF20-35: 35° Gripper Finger, Size 20

Weight: 2.24 oz [63.5 g]

GRF30-35: 35° Gripper Finger, Size 30

Gripper Finger Mounts

EDCO USA Finger Gripper Clamps come in various sizes to provide a quality clamp for use with a Finger Gripper.

	A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	D1 in $[\mathrm{mm}]$	D2 in $[\mathrm{mm}]$	E in $[\mathrm{mm}]$	F in $[\mathrm{mm}]$	Weight oz $[\mathrm{g}]$
FGM-M2050	$2.25[57.2]$	$1.50[38.1]$	$0.82[20.8]$	$0.50[12.6]$	$0.79[20.1]$	$1.00[25.4]$	$0.75[19.1]$	$1.48[42.0]$
FGM-M2075	$2.25[57.2]$	$1.50[38.1]$	$0.82[20.8]$	$0.75[19.1]$	$0.79[20.1]$	$1.00[25.4]$	$0.75[19.1]$	$1.75[49.7]$
FGM-M3075	$2.70[68.6]$	$1.95[49.5]$	$1.02[25.9]$	$0.75[19.1]$	$1.18[30.0]$	$1.50[38.1]$	$0.75[19.1]$	$2.77[78.4]$

Example: CLM1050, FGM-M2050, and GRF20-35

Edge Mounts

EDCO Edge Clamps are made out of Delrin and are designed for use with the EDCO Finger Grippers, acting as a stop for the part being gripped.

	A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	C in $[\mathrm{mm}]$	D in $[\mathrm{mm}]$	E in $[\mathrm{mm}]$	Weight oz [g]
ANF20D	$2.02[51.2]$	$1.20[30.5]$	$1.25[31.8]$	$0.79[20.0]$	$0.50[12.7]$	$0.91[25.8]$
ANF30D	$2.65[67.3]$	$1.64[41.5]$	$1.50[38.1]$	$1.18[30.0]$	$0.75[19.1]$	$1.83[51.8]$

Example: ANF20D w/ GRF20-95

NR20: Nipper Body

High-quality nipper bodies are designed for reliable operation over a long lifespan.

- accepts any brand size 20 nipper blades
- corrosion resistant stainless-steel spring
- machined aluminum body with low-friction, co-deposited nickel plating with teflon finish
- end cap includes $1 / 8$ " bottom and side air-supply ports.
- repair components made by EDCO USA available for purchase

Weight: 10.00 oz [283.6 g]

Tecnical Specifications	
Sprue \varnothing Cut:	0.28 in $[7.0 \mathrm{~mm}]$
Cutting Pressure:	$980 \mathrm{Ibf}{ }^{*}$
Air Consumption:	$4.75 \mathrm{in}^{3}$

*When compressed air is supplied at 87 psi.

NR30: Nipper Body

High-quality nipper bodies are designed for reliable operation over a long lifespan.

- accepts any brand size 30 nipper blades
- corrosion resistant stainless-steel spring
- machined aluminum body with low-friction, co-deposited nickel plating with teflon finish
- end cap includes $1 / 8$ " bottom and side air-supply ports.
- repair components made by EDCO USA available for purchase

Weight: 18.30 oz [518.8 g]

Tecnical Specifications	
Sprue \varnothing Cut:	$0.39 \mathrm{in}[10.0 \mathrm{~mm}]$
Cutting Pressure:	$1,320 \mathrm{lbf}^{*}$
Air Consumption:	$10.35 \mathrm{in}^{3}$

*When compressed air is supplied at 87 psi.

Nipper Mounts

Anodized aluminum nipper mounts are perfect for mounting nippers with other EOAT components.

See page 17:29 to order a preassembled Swivel Nipper Mount.

	A in $[\mathrm{mm}]$	B in $[\mathrm{mm}]$	D in $[\mathrm{mm}]$	Compatible Nipper	Weight oz $[\mathrm{g}]$
NM20	$2.73[69.3]$	$1.36[34.4]$	$1.97[50.0]$	NR20	$1.52[43.0]$
NM30	$3.13[79.5]$	$1.56[39.5]$	$2.21[56.1]$	NR30	$1.72[48.6]$

Example: SNM7530-50

Swivel-Nipper Mounts

Swivel-Nripper Mounts combine the functionality of our Nipper Mounts and Swivel-Ball Mounts with the flexibility of our Stand-Off Mounts with a Mount Plate for a complete assembly.

	A in [mm]	B in [mm]	C in [mm]	D1 in $[\mathrm{mm}]$	D2 in [mm]	Weight oz [g]
SNM5020	$4.02[102.1]$	$1.82[46.2]$	$0.97[24.6]$	$0.50[12.8]$	$1.77[45.0]$	$3.34[94.7]$
SNM5020-50	$4.02[102.1]$	$1.82[46.2]$	$1.47[37.3]$	$0.50[12.8]$	$1.77[45.0]$	$3.84[109.0]$
SNM5020-125	$4.02[102.1]$	$1.82[46.2]$	$2.22[56.4]$	$0.50[12.8]$	$1.77[45.0]$	$4.64[131.5]$
SNM5030	$4.42[112.3]$	$2.02[51.3]$	$0.97[24.6]$	$0.50[12.8]$	$2.21[56.1]$	$3.54[100.3]$
SNM5030-50	$4.42[112.3]$	$2.02[51.3]$	$1.47[37.3]$	$0.50[12.8]$	$2.21[56.1]$	$4.04[114.6]$
SNM5030-125	$4.42[112.3]$	$2.02[51.3]$	$2.22[56.4]$	$0.50[12.8]$	$2.21[56.1]$	$4.83[137.0]$
SNM7520	$4.28[108.7]$	$1.93[49.0]$	$0.97[24.6]$	$0.75[19.1]$	$1.77[45.0]$	$3.49[99.0]$
SNM7520-50	$4.28[108.7]$	$1.93[49.0]$	$1.47[37.3]$	$0.75[19.1]$	$1.77[45.0]$	$4.00[113.3]$
SNM7520-125	$4.28[108.7]$	$1.93[49.0]$	$2.22[56.4]$	$0.75[19.1]$	$1.77[45.0]$	$4.79[135.8]$
SNM7530	$4.68[118.9]$	$2.13[54.1]$	$0.97[24.6]$	$0.75[19.1]$	$2.21[56.1]$	$3.69[104.6]$
SNM7530-50	$4.68[118.9]$	$2.13[54.1]$	$1.47[37.3]$	$0.75[19.1]$	$2.21[56.1]$	$4.19[118.9]$
SNM7530-125	$4.68[118.9]$	$2.13[54.1]$	$2.22[56.4]$	$0.75[19.1]$	$2.21[56.1]$	$4.99[141.4]$

T-Slot Receivers w/ Vacuum Connection

Provides a bayonet-style quick-change for suction cups equipped with o-ring sealed T-slot adapters. High quality Teflon impregnated nickel plating reduces friction during insertion and the simplified latch features a larger finger tab for comfortable operation.

See the Vacuum Cups Fittings section for T-Slot Adapters.

	Ports	
TR-14		
	(Blank)	NPT Threads
	$-G$	G Threads

Weight: $0.20 \mathrm{lb}[90.7 \mathrm{~g}]$

T-Slot Receivers w/ Vacuum Connection

T-Slot Receiver w/ Vacuum Connection \& Apple Core Pin or Ball Swivel Mount

	Mount		Ports	
TR-A				
	- A	Apple Core Pin	(Blank)	NPT Threads
	$-B$	Ball Swivel	$-G$	G Threads

Weight: $0.35 \mathrm{Ibs}[159.0 \mathrm{~g}]$

Ball Swivel

Weight: $0.40 \mathrm{lbs}[181.0 \mathrm{~g}]$

T-Slot Receivers w/ Vacuum Connection

Surface Mount T-Slot Receiver w/ Vacuum Connection

Weight: 0.46 lb [209.0 g]

Quick Change Slides

QCS provides a cost-effective method to increase productivity by virtually eliminating end-of-arm tool change-over time. With QCS, a robot can be re-tooled for a different part and back in service within a few minutes. Compressed air and vacuum lines are automatically connected as the tool plate mates with the clamp base on the robot arm. The clamp handle can be indexed to a convenient position in 30° increments.

Please contact us for details about custom layouts.

Robot Clamp Base

Tool Plate: QCS-100T

Tool Plate: QCS-100TD

Weight: $0.77 \mathrm{lb}[347.0 \mathrm{~g}]$

Tool Park: QCS-100P

An optional Tool Park provides convenient storage and protection for end-of-arm tools when not in service. One Tool Park per Tool Plate is required for efficient operation.

Quick Change Slides

QCS provides a cost-effective method to increase productivity by virtually eliminating end-of-arm tool change-over time. With QCS, a robot can be re-tooled for a different part and back in service within a few minutes. Compressed air and vacuum lines are automatically connected as the tool plate mates with the clamp base on the robot arm. The clamp handle can be indexed to a convenient position in 30° increments.

Please contact us for details about custom layouts.

Robot Clamp Base

Weight: $2.58 \mathrm{lb}[1169.0 \mathrm{~g}]$

Tool Plate: QCS-140T

RQCP: Robot Quick Change Pump

Vacuum pump fits Flexpicker and other robots with four 6 mm tapped interface on 40 mm bolt circle. Tool is magnetically coupled to pump for fast replacement for either maintenance or for changeover to manipulate a different part. Handles up to $4.4 \mathrm{lbs}(2 \mathrm{~kg})$ load. High vacuum flow venturis allow fast evacuation and the purge options quickly dissipate vacuum to optimize cycle times.

	Venturi Series			Purge Option
RQCP-		10L		A
	08L	ER08L	(Blank)	None
	10L	ER10L	-LP	Limited Pressure Purge
			-PP	Positive Pressure Purge

Weight: 3.70 oz [104.9 g]

Code	Function	Threads
1	Air Supply	G $1 / 8$ NPSF
2 A	Vacuum - Auxiliary	G $1 / 8$ NPSF
3	Exhaust	G $1 / 4$

RQCP: Purge Options

Purge option provides faster part placement by quickly dissipating residual vacuum which is especially useful when using bellows-style vacuum cups. When placing a part, the air supply to the vacuum pump is left on and a compressed air signal to the Purge unit blocks off the pump exhaust to redirect venture air into the vacuum tool to quickly dissipate any residual vacuum.

The purge should remain on until the suction cups have separated from the part that was placed then for a brief additional time to blow out any ingested debris. VSP-18 Switch protector is highly recommended when using both a Purge option and a monitoring vacuum sensor to prevent overpressure damage.

RQCP-P: Tool Plate

Precision steel tool plate is used to mount and register tooling to the RQCP pump. A port seal passes pump vacuum into the tool so that tool design is simplified.

Example (Not For Sale)

Weight: 1.08 oz [30.5 g]

QC90-B: Tool-Side Quick Changer
Tool-side EOAT Changer is typically used on injection molding machines to handle tools weighing up to 25 lbs. Mates with 90 mm robot-side changer made by others.

G 1/8 NPSF Connections (Qty 8)

QC150-B: Tool-Side Quick Changer

Tool-side EOAT Changer is typically used on injection molding machines to handle tools weighing up to 65 lbs . Mates with 150 mm robot-side changer made by others.

G 1/4 Connections (Qty 10)

Vacuum System Training Section 17

Atmospheric Pressure

The Earth is 7,900 miles ($12,715 \mathrm{~km}$) in diameter and is enveloped by a layer of gases about 60 miles (96.6 km) thick which is called the atmosphere. This mixture of gases is comprised of 78% nitrogen and 21% oxygen plus trace amounts of many other gases which collectively make up the atmospheric "air" that we all breathe.

The Earth's gravitational field holds the atmosphere so that it rotates in unison with the Earth and the atmospheric pressure exerted at any altitude is simply the sum of the weight of all the air molecules in a column above that point. As altitude increases, air density decreases and there will be fewer molecules in the shorter column above the measurement point. It is easy to see why atmospheric pressure decreases with increasing altitude. At an altitude of 62 miles (100 km) and beyond, atmospheric pressure approaches zero. Even in deep outer space there are still a few gas molecules per cubic mile so a true absolute zero pressure is not achieved even though it is very close.

Altitude		Barometer		Atmospheric Pressure	
Feet	Meters	inHG	mmHG	S	kPa
-5,000	-1,524	35.58	903.7	17.48	120.5
-4,500	-1,372	35	889	17.19	118.5
-4,000	-1,219	34.42	874.3	16.9	116.5
-3,500	-1,067	33.84	859.5	16.62	114.6
-3,000	-914	33.27	845.1	16.34	112.7
-2,500	-762	32.7	830.6	16.06	110.7
-2,000	-610	32.14	816.4	15.78	108.8
-1,500	-457	31.58	802.1	15.51	106.9
-1,000	-305	31.02	787.9	15.23	105
-500	-152	30.47	773.9	14.96	103.1
0	0	29.92	760	14.7	101.3
500	152	29.38	746.3	14.43	99.49
1,000	305	28.86	733	14.16	97.63
1,500	457	28.33	719.6	13.91	95.91
2,000	610	27.82	706.6	13.66	94.19
2,500	762	27.32	693.9	13.41	92.46
3,000	914	26.82	681.2	13.17	90.81
3,500	1,067	26.33	668.8	12.93	89.15
4,000	1,219	25.84	656.3	12.69	87.49
4,500	1,372	25.37	644.4	12.46	85.91
5,000	1,524	24.9	632.5	12.23	84.33
6,000	1,829	23.99	609.3	11.78	81.22
7,000	2,134	23.1	586.7	11.34	78.19
8,000	2,438	22.23	564.6	10.91	75.22
9,000	2,743	21.39	543.3	10.5	72.4
10,000	3,048	20.58	522.7	10.1	69.64
15,000	4,572	16.89	429	8.3	57.16
20,000	6,096	13.76	349.5	6.76	46.61
25,000	7,620	11.12	282.4	5.46	37.65
30,000	9,144	8.9	226.1	4.37	30.13
35,000	10,668	7.06	179.3	3.47	23.93
40,000	12,192	5.56	141.2	2.73	18.82
45,000	13,716	4.37	111.1	2.15	14.82
50,000	15,240	3.44	87.5	1.69	11.65
55,000	16,764	2.71	68.9	1.33	9.17
60,000	18,288	2.14	54.2	1.05	7.24
70,000	21,336	1.33	33.7	0.651	4.49
80,000	24,384	0.827	21	0.406	2.8
90,000	27,432	0.52	13.2	0.255	1.76
100,000	30,480	0.329	8.36	0.162	1.12

The International Standard Atmosphere (ISA) is defined as a mean atmospheric pressure of 29.92 " $\mathrm{Hg}(760 \mathrm{~mm} \mathrm{Hg})$ at $59^{\circ} \mathrm{F}\left(15^{\circ} \mathrm{C}\right)$ in dry air at sea level. Other equivalent units are $14.72 \mathrm{psi}, 1$ bar and 101.3 kPa . To complicate matters, the instrument used to measure atmospheric pressure is a barometer and atmospheric pressure is commonly called barometric pressure so the two terms can be used interchangeably.

In addition to altitude, atmospheric pressure is affected by air temperature, local weather conditions and other variables to a lesser extent. The atmosphere is disturbed by weather systems which can cause either "high" or "low" pressure systems by increasing or decreasing the local atmospheric layer thickness. What we usually hear from a weather forecaster is that the barometric pressure is "falling" and bringing in a storm, or, that the barometric pressure is "rising" so sunny days are forecast.

Vacuum

Vacuum is simply a pressure that is less than the surrounding atmospheric pressure. Essentially it is a difference in pressure, or differential, that can be used to do work. Since vacuum is by definition a negative pressure, the common terminology of high-vacuum and low-vacuum can be confusing. The preferred terminology is deep-vacuum or shallow-vacuum. Both of which are relative to local atmospheric pressure. The units of measure for positive pressure and vacuum pressure are the same but a minus sign (-) or the word "vacuum" signifies a negative pressure relative to atmosphere.

A vacuum gauge has a calibrated mechanism that is referenced to local atmospheric pressure so the value displayed is the amount that the measured pressure is below atmospheric pressure. This is convenient since the measured "gauge" vacuum level is the vacuum pressure differential that is available to do work and can thus be used directly for calculations of vacuum force which is directly proportional to vacuum pressure and the sealed area upon which it acts.

Pressure Relationships

The relationship between atmospheric pressure, positive gauge pressure, sub-atmospheric pressure (vacuum) and absolute zero is shown in the previous drawing. An absolute measurement is always positive because it is referenced from absolute zero. A sub-atmospheric pressure line is shown where the absolute pressure is constant over a threeday period. A sine curve represents the normal variation in atmospheric pressure that could occur over the same three-day period. Vacuum pressure is measured from the atmospheric pressure curve down to the sub-atmospheric pressure line and it can be readily seen that the magnitude of available vacuum pressure is different for each of the three days. In effect, the ability to do work (pressure differential), changes in accordance with the atmospheric (barometric) pressure. This is why we recommend using a mid-range rather than a deep vacuum pressure when designing vacuum systems.

On Earth, a vacuum is not self-sustaining since seals leak and most materials are minutely permeable. Over time, enough air molecules will be pulled through the material that the vacuum will be "lost" due to equalization with atmospheric pressure. To maintain a vacuum for a long time period, a vacuum pump must periodically evacuate air molecules to maintain a desired vacuum pressure. Depending on material permeability (porosity), continuous evacuation may be required to maintain a desired vacuum pressure.

Vacuum Flow

The performance of a vacuum pump is defined by its' performance curve which is simply a plot of the vacuum flow rate that it is capable of producing at a particular vacuum pressure. As vacuum pressure increases, it becomes more difficult to remove (pump out) additional air molecules, so vacuum flow rate decreases until it becomes zero at the deepest attainable vacuum pressure. Vacuum flow rate will always be highest at atmospheric pressure (zero vacuum) where the pump is under no load. Many pump manufacturers advertise the efficiency of their pumps with this misleading number. In reality this specification is meaningless since force can't be developed and work can't be done unless vacuum pressure is being created.

SEALED SYSTEM

Vacuum pressure determines the amount of force that can be developed to hold a work piece or to carry a load. For a sealed system with no leakage, the two main concerns are; how much vacuum pressure is needed and how quickly can the system be evacuated to the required vacuum pressure? Since the system is sealed, using a larger vacuum pump will reduce evacuation time but will not increase the system vacuum pressure since, given enough time, even a small vacuum pump will attain maximum vacuum pressure. A larger vacuum pump will consume more energy without increasing the system load capacity so it is important to not over-specify vacuum pump capacity for a sealed system.

However, when the work piece is porous (permeable) or the system otherwise leaks, the vacuum pump must produce enough vacuum flow rate to overcome the leakage and still attain the necessary vacuum pressure. The pump must also have enough excess capacity to overcome possible future variations in work piece porosity. We have found corrugated board porosity variations of 4:1 among vendors supplying boxes to the same end user.

System porosity flow increases directly with increased vacuum pressure while pump flow decreases with increased vacuum pressure in accordance with its' performance characteristics. As a result, doubling the vacuum pump capacity in a porous system will double the energy usage (air consumption) but will only cause a smaller incremental increase in vacuum pressure. At deeper system vacuum pressures the diminishing-returns effect becomes more pronounced so this is another reason to design systems for proper operation at mid-vacuum pressure by simply increasing the effective area upon which the vacuum pressure acts.

We offer free porosity evaluation and assistance with vacuum pump selection. EDCO USA will do the calculations for you and help you select the correct pump for your application.

POROUS SYSTEM

POROSITY FLOW

FROM ATMOSPHERE

Air-Powered Vacuum Generators

A vacuum pump is a device that is capable of evacuating (removing) air molecules from a closed volume so that a less-than-atmospheric pressure condition is attained. Compressed air-powered vacuum pumps are also called vacuum generators and can be simple mono-stage pumps (venturi), or more complex high-flow multi-stage, multiejector designs. EDCO USA manufactures both types, so we can recommend the best pump for your application without bias.

Vacuum pumps are designed to be capable of evacuating a specific percentage of air molecules to attain a vacuum pressure that is dependent upon the available atmospheric pressure. For example; a pump that is capable of attaining an 80% vacuum will develop $23.9^{\prime \prime} \mathrm{Hg}(608 \mathrm{~mm} \mathrm{Hg})$ when the barometric pressure is $29.9^{\prime \prime} \mathrm{Hg}(760 \mathrm{~mm} \mathrm{Hg})$, but the same pump will only develop 20.7 " $\mathrm{Hg}(524 \mathrm{~mm} \mathrm{Hg})$ at 4000 feet above sea level where the local barometric pressure is only $25.8^{\prime \prime} \mathrm{Hg}(655 \mathrm{~mm} \mathrm{Hg})$. Local weather conditions can also reduce vacuum pressure, as, for example, when barometric pressure drops from $29.9^{\prime \prime} \mathrm{Hg}$ to $28^{\prime \prime} \mathrm{Hg}$ during a storm. It is important to realize that vacuum pressure fluctuations are a normal characteristic of vacuum systems and are not necessarily caused by a vacuum pump problem.

To minimize the effect of vacuum pressure variations, we recommend that systems be designed for mid-range vacuum levels of $12-18$ " Hg $(305-457 \mathrm{~mm} \mathrm{Hg})$ that are consistently attainable no matter what the weather conditions may be.

Air-powered vacuum pumps are compact and lightweight so they should be mounted close to the point of vacuum usage to minimize the internal volume of vacuum hose and tubing. Vacuum is produced immediately when compressed air flows into the pump, so it is not necessary to turn the pump on long before contacting a work piece as is common with electro-mechanical pump systems.

Electro-Mechanical Vacuum Pumps

Premature wear will result from frequent starting and stopping of an electro-mechanical vacuum pump so they are primarily suited for systems requiring constant, or nearly constant, vacuum flow so the pump is powered continuously. Most types are also not suited for operating at maximum vacuum and zero flow conditions which causes poor lubrication and over-heating of the pumping mechanism.

Electro-mechanical vacuum pumps tend to be noisy, bulky, heavy and hot so they are usually mounted some distance away from the point of vacuum use. In order to be used in a pick \& place system (pick something from one location and place in another), several additional components are required such as a motor starter, vacuum relief valve, exhaust muffler, large diameter vacuum hoses and a 3-way vacuum control valve.

Collectively these components, and the associated assembly labor, add substantially to the installed cost of the vacuum system and each is an additional potential failure mode when evaluating system reliability. Operating costs will also be increased because electro-mechanical pumps are highmaintenance items and must be overhauled frequently.

Electro-mechanical pumps efficiently convert electrical power into vacuum flow and pressure, but, because they must run continuously, they can't take advantage of the system duty-cycle to reduce overall energy consumption. However, for systems requiring constant large vacuum flows, they may be the best solution.

Duty Cycle \& Energy Consumption

During a pick \& place cycle, a vacuum source is turned on for the "pick" and remains on during the traverse to the place location and then turns off to "place" the work piece. Vacuum is not necessary for the traverse back to home position nor for the dwell time before the next "pick" is required. If vacuum is on for $1 / 4$ of the full machine cycle then the duty-cycle is 25%. An air-powered vacuum pump consumes compressed air only while it is creating vacuum. In this example the average air consumption would be reduced to 25% of the cataloged pump air consumption rate whereas an electro-mechanical vacuum pump must run continuously and consumes energy 100% of the time.

A good rule-of-thumb is to consider an air-powered vacuum pump whenever an adequate supply of compressed air is available, especially if the system has an intermittent vacuum requirement or duty-cycle.

Air-Powered Vacuum Generator Controls

Air-powered pumps can be simply controlled by a single air valve. When air is supplied to the pump, vacuum is supplied to the system and when the air supply is stopped, atmospheric air is drawn into the vacuum system through the pump exhaust to dissipate vacuum and release the work piece. A 3-way valve mounted close to the pump is recommended for fast operation.

Release / Blow-Off

A compressed air assist will provide a faster part release for high-speed systems. A stored-volume automatic blowoff is commonly used for small systems and consists of a volume chamber that is charged with the same air supply that operates the vacuum pump. When the 3-way air supply valve is turned off, a brief pressurized air pulse from the chamber is directed into the vacuum system so the part is quickly released. For larger systems, or those requiring a greater degree of control, an air valve can be connected to the vacuum system via a Release Check valve that prevents loss of vacuum through the blow-off air valve. The blow-off pulse duration is controlled by how long the blow air valve is left on. During the blow-off mode a flow path exists from the vacuum system to atmosphere via the pump exhaust port, so it is normal for air to escape at this point. This also means that no significant positive pressure can be developed in the vacuum system so long restrictive tubing lengths to suction cups may cause part release delays, especially when bellows style cups with higher internal volumes are used.

Energy Saving

For sealed vacuum systems, a non-return vacuum check valve can be added to prevent back-flow from the pump exhaust when the pump air supply is stopped. This allows the vacuum pump to be cycled on until a desired vacuum pressure is achieved and then turned off to conserve energy (compressed air). A vacuum switch senses when vacuum pressure has decreased and cycles the pump on to restore the vacuum pressure. A separate vacuum volume chamber can be added to decrease the "leak-down" rate but proper ES system operation still entirely depends on maintaining a sealed system. If the system will handle a porous work piece, do not use an Energy Saving control.

Vacuum Cups

Suction cup is the usual industrial term for a vacuum cup. Most cups are round because that is a strong shape that resists collapse under vacuum pressure and it efficiently distributes load forces through the cup walls to the fitting. A circular shape also provides the greatest area for the amount of space it occupies. Industrial cups usually employ a metal fitting for mounting the cup and for connecting a vacuum source to allow the inner volume to be evacuated.

Suction cups are made of rubber and include a flared lip to form a flexible seal against a work piece to allow the cup to be evacuated with a vacuum pump. Several cups can be connected to a central pump, or a small vacuum pump can be used for each cup. When the cup is evacuated an attraction force is developed that holds the cup to the surface of the work piece, which for a vertical cup axis is the same as "lifting" capacity. However, if the load is perpendicular to the cup axis (shear load) then the attractive force must be multiplied by the appropriate coefficient of friction to determine an allowable shear load. In either case, an additional factor-of-safety must be applied for prudent design. When rapid movement occurs in automation systems, a designer must consider the combined magnitude of both lifting and shear loads when selecting components.

Depending on the contours of the work piece the allowable cup diameter may be limited, so multiple cups may be required to increase the total area and achieve a desired load capacity plus a generous factor-of-safety. We do not recommend increasing the required vacuum level to make a system work. Instead, increase the number or size of cups so the total effective area is large enough for proper system design. Suction cups are relatively inexpensive so additional cups are cheap insurance against potential system failure.

The vacuum force equation $\mathrm{F}=\mathrm{P} \times \mathrm{A}$ (Force $=$ Pressure times Area) is difficult to apply to rubber suction cups because cups are approximately sized according to the outer lip diameter which is misleading because it is much larger than the actual effective diameter that the vacuum pressure acts upon.

Vacuum Cup Selection

For economy, always use the lowest cost material unless there is a good reason not to. AMERIFLEX (50A) is an outstanding replacement for competitors blue vinyl (PVC) cups in moderate, factory temperature, applications Excellent wear resistance and lower priced than nitrile. DURAMAX (45A) is a soft and supple non-marking (no residue) material for moderate temperature applications including glass and other high gloss surfaces. NITRILE (50A) is a general purpose material with good wear characteristics, making it well suited for most industrial room-temperature environments. SILICONE (50A) has a very wide temperature range and is suitable for both sub-freezing applications and for elevated temperatures. Silicone is inherently more supple than other rubbers so it may seal better on textured surfaces. Silicone also has the reputation for causing problems with painted or plated parts so some plants will not allow it to be used. CONDUCTIVE SILICONE (50A) provides a conductive path to dissipate static electrical charges so electronic components will not be damaged. VITON (60A) provides the highest temperature rating but is also harder so sealing on textured surfaces may be affected.

General Rules

Three points define a plane. So, for good stability use three or more cups that are spaced apart as far as possible. Start with the largest cup size that can be reliably placed on the work piece and then increase the number of cups until a suitable factor of safety is achieved. For handling boxes and other containers, apply the suction cups in corners and near the outer vertical walls. Remember, the box contents sit on the box bottom so the weight load is transferred to the box top via the side walls.

Thread Systems

ISO Thread:

- Cylindrical Metric Thread - Designated with the letter M. (Example: M5x0.8)
- Cylindrical Inch Thread (Unified) - Designated with the letters UN. (Example: 10-32 UNC)

Dry Seal Thread (American System Pipe Thread):

- Conical Thread - Designated with NPT or NPTF. (Example: 1/4-18 NPTF)
- Cylindrical Thread - Designated with NPSF. (Example: 1/2-14 NPSF)

G Thread (Whitworth Pipe Thread):

- Cylindrical thread designated with the letter G. (Example: G 1/4-19)
- BSPP is a tighter tolerance G thread. We use G threads on our products unless otherwise noted.

Thread Compatibility

Some combinations of G (BSPP) threads and NPT threads will mate if the engagement length is short. EDCO uses an odd thread description such as G $1 / 8^{\prime \prime}$ NPSF for a female thread to indicate that either $1 / 8^{\prime \prime}$ NPTF or G $1 / 8^{\prime \prime}$ male threads will mate with it. By using straight threads, the fitting shoulder will bottom out against the mating surface so that all cups are at the same installed height. If tapered threads were used, the cup installed height would vary depending on the length of thread engagement after tightening. Pipe dope sealant is usually unnecessary but will positively eliminate even small leaks. Tape sealant can shred slivers that tend to migrate and cause problem so it's best to avoid using it.

Please note, some thread sizes in different systems do not always fit.

[^0]: ${ }^{1}$ These sizes are available in polypropylene. Add suffix -PP for polypropylene body and bowl. Bowl will be opaque, NOT transparent.

[^1]: $\sec / 1,000 \mathrm{in}^{3} \times 0.61=\sec / 1$

[^2]: Pilot can be rotated 360 degrees.

[^3]: *Screw heads protrude by approximately 0.07 in [1.8 mm].

